#include "dungeons.h"
#include <vector>
#include<iomanip>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
#define ll long long
#define vi vector<int>
#define vl vector<ll>
#define pi pair<ll, ll>
#define vp vector<pi>
#define vvp vector<vp>
struct node {
ll max = -1;
ll to = -1;
ll gain = -1;
void print() {
cerr << "node : {max : " << max << ", to : " << to << ", gain : " << gain << "}\n";
}
};
int n;
vi S, P, W, L;
vl M, M2, M3;
vector<vector<node>> BL;
void print(vi &L1) {
cerr << "{";
for (auto i : L1) {
cerr << i << ", ";
}
cerr << "}\n";
}
void print(vl &L1) {
cerr << "{";
for (auto i : L1) {
cerr << i << ", ";
}
cerr << "}\n";
}
void print(vector<vector<node>> &L1) {
cerr << "{\n";
for (auto i : L1) {
cerr << "{\n";
for (auto j : i) {
j.print();
}
cerr << "},\n";
}
cerr << "}\n";
}
ll oinkoink(int p) {
if (p == n) return 0;
if (M[p] != -1) return M[p];
return M[p] = oinkoink(W[p]) + 1;
}
ll oinkoinkoink(int p, ll z) {
if (p == n) return -1;
if (M2[p] != -1) return -1;
if (M3[p] != -1) {
return M2[p] = z - M3[p];
}
M3[p] = z;
ll a = oinkoinkoink(L[p], z + P[p]);
if (a == -1) {
M2[p] = -2;
return -1;
}
if (M2[p] != -1) {
return -1;
}
M2[p] = a;
return a;
}
void init(int N, std::vector<int> s, std::vector<int> p, std::vector<int> w, std::vector<int> l) {
n = N;
S = s;
P = p;
W = w;
L = l;
M = vl(n, -1);
M2 = vl(n, -1);
BL = vector<vector<node>>(n, vector<node>(log2(n)+2));
for (int i = 0; i < n; i++) oinkoink(i);
for (int i = 0; i < n; i++) {
M3 = vl(n, -1);
oinkoinkoink(i, 0);
}
for (int i = 0; i < n; i++) {
BL[i][0] = {S[i], L[i], P[i]};
}
for (int j = 1; j < BL[0].size(); j++) {
//cerr << j << endl;
for (int i = 0; i < n; i++) {
//if (i == 32) cerr << "i : " << i << endl;
ll to = BL[i][j-1].to;
//if (i == 32) cerr << "to : " << to << endl;
if (to == -1 || to == n || BL[i][j-1].max == -1) continue;
//if (i == 32) cerr << "BL[to][j-1].max - BL[i][j-1].gain : " << (BL[to][j-1].max - BL[i][j-1].gain) << endl;
//if (i == 32) cerr << "BL[to][j-1].to : " << BL[to][i-1].to << endl;
//if (i == 32) cerr << "BL[to][j-1].gain + BL[i][j-1].gain : " << (BL[to][j-1].gain + BL[i][j-1].gain) << endl;
BL[i][j] = {max(BL[to][j-1].max - BL[i][j-1].gain, (ll)-1), BL[to][j-1].to, BL[to][j-1].gain + BL[i][j-1].gain};
}
}
/*
cerr << "M : ";
print(M);
cerr << "M2 : ";
print(M2);
cerr << "M3 : ";
print(M3);
cerr << "BL : ";
print(BL);
//*/
return;
}
ll oink(ll x, ll z);
ll oinkoinkoinkoink(ll x, ll z) {
//cerr << "oinkoinkoinkoink(" << x << ", " << z << ")" << endl;
for (int i = BL[x].size()-1; i > -1; i--) {
if (z >= BL[x][i].max || BL[x][i].max == -1) continue;
return oink(BL[x][i].to, z + BL[x][i].gain);
}
return oink(L[x], z + P[x]);
}
ll oink(ll x, ll z) {
//cerr << "oink(" << x << ", " << z <<")" << endl;
if (x == n) return z;
if (z >= S[0]) return z + M[x]*S[0];
if (M2[x] == -2) return oinkoinkoinkoink(x, z);
//cerr << "S[0]-z-1 : " << S[0]-z-1 << ", M2[x] : " << M2[x] << ", ((S[0]-z-1)/M2[x])*M2[x] : " << ((S[0]-z-1)/M2[x])*M2[x] << ", z : " << z << endl;
z += ((S[0]-z-1)/M2[x])*M2[x];
return oinkoinkoinkoink(x, z);
}
long long simulate(int x, int z) {
return oink(x, z);
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |