Submission #1172105

#TimeUsernameProblemLanguageResultExecution timeMemory
1172105baldwin_huangRainforest Jumps (APIO21_jumps)C++20
23 / 100
726 ms133620 KiB
#include <bits/stdc++.h> using namespace std; int n; vector<int> h; const int INF = 1e9; struct node { int left = -1; int right = -1; }; vector<node> nodes; vector< vector<int> > binary_lifting(262144 + 1, vector<int>(32, -1)); // It tells you the 2^j ancestor of i. vector< vector<int> > binary_lifting_x(262144 + 1, vector<int>(32, -1)); vector< vector<int> > binary_lifting_largest_left(262144 + 1, vector<int>(32, -1)); void init(int N, vector<int> H) { n = N; h = H; nodes = vector<node>(n); // It's a graph, has the index to the children. for (int i = 1; i < n; i++) { int target = i - 1; while (H[target] <= H[i]) { if (target == -1) { break; } target = nodes[target].left; } nodes[i].left = target; } for (int i = n - 2; i >= 0; i--) { int target = i + 1; while (H[target] <= H[i]) { if (target == -1) { break; } target = nodes[target].right; } nodes[i].right = target; } // Create the binary_lift // Create the base ancestors; for (int i = 0; i < n; i++) { int greatest = -1; int ancestor = -1; if (nodes[i].left != -1 && greatest < H[nodes[i].left]) { greatest = H[nodes[i].left]; ancestor = nodes[i].left; } if (nodes[i].right != -1 && greatest < H[nodes[i].right]) { greatest = H[nodes[i].right]; ancestor = nodes[i].right; } binary_lifting[i][0] = ancestor; } for (int i = 1; i < 32; i++) { for (int j = 0; j < n; j++) { if (binary_lifting[j][i - 1] == -1) { binary_lifting[j][i] = -1; } else { binary_lifting[j][i] = binary_lifting[binary_lifting[j][i - 1]][i - 1]; } } } // Bin lift for the Xs. for (int i = 0; i < n; i++) { int smallest = 1e9 + 10; int ancestor = -1; if (nodes[i].left != -1 && smallest > H[nodes[i].left]) { smallest = H[nodes[i].left]; ancestor = nodes[i].left; } if (nodes[i].right != -1 && smallest > H[nodes[i].right]) { smallest = H[nodes[i].right]; ancestor = nodes[i].right; } binary_lifting_x[i][0] = ancestor; } for (int i = 1; i < 32; i++) { for (int j = 0; j < n; j++) { if (binary_lifting_x[j][i - 1] == -1) { binary_lifting_x[j][i] = -1; } else { binary_lifting_x[j][i] = binary_lifting_x[binary_lifting_x[j][i - 1]][i - 1]; } } } // Bin lift for the largest to the left for (int i = 0; i < n; i++) { binary_lifting_largest_left[i][0] = nodes[i].right; } for (int i = 1; i < 32; i++) { for (int j = 0; j < n; j++) { if (binary_lifting_largest_left[j][i - 1] == -1) { binary_lifting_largest_left[j][i] = -1; } else { binary_lifting_largest_left[j][i] = binary_lifting_largest_left[binary_lifting_largest_left[j][i - 1]][i - 1]; } } } return; } int minimum_jumps(int A, int B, int C, int D) { if (C != D) { return -1; } // Look for the starting point, aka, the new A. for (int i = 18; i >= 0; i--) { if (binary_lifting_largest_left[A][i] != -1 && binary_lifting_largest_left[A][i] <= B && h[binary_lifting_largest_left[A][i]] <= h[C] && (h[C] < h[binary_lifting_largest_left[A][i + 1]] || binary_lifting_largest_left[A][i + 1] == -1)) { A = binary_lifting_largest_left[A][i]; } } int ans = 0; int pos = A; // Find the Y that is <= C for (int i = 18; i >= 0; i--) { if (binary_lifting[pos][i] != -1 && h[binary_lifting[pos][i]] <= h[C] && (h[C] < h[binary_lifting[pos][i + 1]] || binary_lifting[pos][i + 1] == -1)) { pos = binary_lifting[pos][i]; ans += 1<<i; } } // Does the same but for the X value. for (int i = 18; i >= 0; i--) { if (binary_lifting_x[pos][i] != -1 && h[binary_lifting_x[pos][i]] <= h[C] && (h[C] < h[binary_lifting_x[pos][i + 1]] || binary_lifting_x[pos][i + 1] == -1)) { pos = binary_lifting_x[pos][i]; ans += 1<<i; } } // Checks if the answer is valid if (pos == C) { return ans; } else { return -1; } }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...