/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
ll mod=1000000007LL;
template<class A=ll>
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}
template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}}
template<class T=ll>
class SparseTable //Range Minimum Queries
{
public:
ll N;
vector<T> a;
vector<vector<T> > v;
T neut = mp(INF,INF); //set for pairs due to LCA
SparseTable() {N=0LL;}
SparseTable(vector<T> b)
{
a=b; N=a.size();
ll lo=(ll) floor((double) log2(N)) +1LL;
vector<T> xx;
REP(i,0,lo) {xx.pb(neut);} REP(i,0,N) {v.pb(xx);}
REP(step,0LL,lo)
{
REP(i,0,N-(1LL<<step)+1LL)
{
if(step==0) {v[i][0]=a[i];}
else {v[i][step]=min(v[i][step-1],v[i+(1LL<<(step-1))][step-1]);}
}
}
}
T query(ll l, ll r)
{
ll step=(ll) floor((double) log2(r-l+1LL));
return min(v[l][step],v[r-(1LL<<step)+1LL][step]);
}
};
class Tree
{
public:
ll N;
vector<ll> p;
vector<vector<ll> > sons;
vector<vector<ll> > adj;
ll root;
vector<bool> visited;
vector<ll> level; //starting in 0
vector<ll> sub; //number of nodes in subtree
vector<ll> val; //node values
vector<ll> DFSarr1; //DFS Array
vector<ll> DFSarr2; //DFS Array for LCA with whole path
vector<ll> pos; //inverted DFSArr, only for LCA
vector<pl> levDFSarr; //array of levels on DFSarr, only needed for LCA
vector<ll> sumto; //weighted graph, length of path root-->i
SparseTable<pl> S; //for LCA
Tree(vector<vector<ll> > ad, ll r=0LL)
{
N=ad.size(); root=r; adj=ad;
REP(i,0,N) {visited.pb(false);}
vector<ll> xx; REP(i,0,N) {sons.pb(xx); p.pb(-1); level.pb(0); sub.pb(1LL); pos.pb(0LL); sumto.pb(0LL);}
DFS_Build(r,r);
REP(i,0,DFSarr2.size()) {pos[DFSarr2[i]]=i;}
REP(i,0,DFSarr2.size()) {levDFSarr.pb(mp(level[DFSarr2[i]],DFSarr2[i]));}
SparseTable<pl> X(levDFSarr); S=X;
}
void Reset()
{
REP(i,0,N) {visited[i]=false;}
}
void DFS_Build(ll s, ll par)
{
DFSarr1.pb(s);
DFSarr2.pb(s);
if(s!=root) {level[s]=level[par]+1LL;}
p[s]=par;
visited[s]=true;
REP(i,0,adj[s].size())
{
if(adj[s][i]==par) {continue;}
sons[s].pb(adj[s][i]);
DFS_Build(adj[s][i],s);
sub[s]+=sub[adj[s][i]];
DFSarr2.pb(s);
}
return;
}
ll LCA(ll a, ll b)
{
a=pos[a]; b=pos[b];
ll l=min(a,b); ll r=max(a,b);
pl ans=S.query(l,r);
return ans.ss;
}
};
int main()
{
ios_base::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
ll N; cin>>N; vector<ll> xx; vector<vector<ll> > adj; REP(i,0,N) {adj.pb(xx);}
pl cur;
REP(i,0,N-1)
{
cin>>cur.ff>>cur.ss; cur.ff--; cur.ss--; adj[cur.ff].pb(cur.ss); adj[cur.ss].pb(cur.ff);
}
Tree T(adj);
vector<ll> ans; REP(i,0,N+1) {ans.pb(1LL);}
REP(i,0,N)
{
REP(j,0,N)
{
ll lca = T.LCA(i,j);
if(lca!=i && lca!=j && i>j)
{
ll val = min(T.sub[i],T.sub[j]);
ans[2*val]=max(ans[2*val],T.level[i]+T.level[j]-2*T.level[lca]+1LL);
}
else if(lca==i)
{
if(i==T.root) {continue;}
ll val = min(T.sub[j],N-T.sub[i]);
ans[2*val]=max(ans[2*val],T.level[j]-T.level[i]+2LL);
}
}
}
vector<ll> t_ans; ll mv=1LL; REP(i,0,N+1) {t_ans.pb(1LL);}
for(ll i=N;i>=0;i--) {mv=max(mv,ans[i]); if(i%2==0) {t_ans[i]=mv;}}
REP(i,1,N+1) {cout<<t_ans[i]<<endl;}
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |