#include <bits/stdc++.h>
using namespace std;
#define FOR(i, l, r) for(int i = (l); i < (r); ++i)
#define ROF(i, r, l) for(int i = (r) - 1; i >= (l); --i)
#define mp make_pair
#define mt make_tuple
#define ff first
#define ss second
#define all(v) begin(v), end(v)
#define rall(v) rbegin(v), rend(v)
#define pb push_back
#define eb emplace_back
#define sz(v) (int)v.size()
#define sum_of(v) accumulate(all(v), 0ll)
#define compact(v) v.erase(unique(all(v)), end(v))
#define dbg(x) "[" #x " = " << (x) << "]"
template<typename T>
bool minimize(T& a, const T& b){
if(a > b) return a = b, true;
return false;
}
template<typename T>
bool maximize(T& a, const T& b){
if(a < b) return a = b, true;
return false;
}
using ll = long long;
using db = double;
using ld = long double;
using ull = unsigned long long;
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
using vi = vector<int>;
using vb = vector<bool>;
using vc = vector<char>;
using vl = vector<ll>;
using vd = vector<db>;
using vpi = vector<pi>;
using vpl = vector<pl>;
void setIO(){
ios_base::sync_with_stdio(0); cin.tie(0);
#ifdef LOCAL
freopen("task.inp", "r", stdin);
freopen("task.out", "w", stdout);
#endif // LOCAL
}
const int MAX = 2e5 + 5;
namespace FenwickTree{
ll bit[MAX]; int n;
void update(int id, ll val){
for(; id <= n; id += id & (-id)) bit[id] += val;
}
ll query(int id){
ll sum = 0;
for(; id > 0; id -= id & (-id)) sum += bit[id];
return sum;
}
ll query(int l, int r){
return query(r) - query(l-1);
}
}
int N, M, A[MAX], l[MAX], r[MAX], up[20][MAX], tin[MAX], tout[MAX], timer_dfs;
pi rmq[20][MAX];
vpi path[MAX];
ll dp[MAX], sum_dp[MAX];
pi query_max(int l, int r){
int k = 31 - __builtin_clz(r - l + 1);
return max(rmq[k][l], rmq[k][r - (1 << k) + 1]);
}
int initCatersianTree(int L, int R){
int m = query_max(L, R).ss;
if(L<m) up[0][l[m] = initCatersianTree(L, m-1)] = m;
if(m<R) up[0][r[m] = initCatersianTree(m+1, R)] = m;
return m;
}
void dfs(int u){
// cout << dbg(u) << '\n';
tin[u] = ++timer_dfs;
if(l[u] != -1) dfs(l[u]);
if(r[u] != -1) dfs(r[u]);
tout[u] = timer_dfs;
}
bool inside(int u, int v){
return tin[u] <= tin[v] && tout[v] <= tout[u];
}
int find_subtree(int u, int c){
if(l[u] != -1 && inside(l[u], c)) return l[u];
if(r[u] != -1 && inside(r[u], c)) return r[u];
return -1;
}
void update(int u, ll val){
FenwickTree::update(tin[u], +val);
FenwickTree::update(tout[u]+1, -val);
}
ll sum_path(int u, int v){
return FenwickTree::query(tin[v]) - FenwickTree::query(tin[u]);
}
void calc(int u){
if(l[u] != -1){
calc(l[u]);
sum_dp[u] += dp[l[u]];
}
if(r[u] != -1){
calc(r[u]);
sum_dp[u] += dp[r[u]];
}
maximize(dp[u], sum_dp[u]);
update(u, sum_dp[u]);
for(auto [v, c] : path[u]){
maximize(dp[u], sum_path(u, v) + sum_dp[u] + c);
}
update(u, -dp[u]);
}
int main(){
setIO();
cin >> N;
FOR(i, 0, N) {
cin >> A[i], rmq[0][i] = mp(A[i], i);
l[i] = -1; r[i] = -1;
}
for(int i = 1; (1 << i) <= N; ++i){
FOR(j, 0, N - (1 << i) + 1) rmq[i][j] = max(rmq[i-1][j], rmq[i-1][j + (1 << (i-1))]);
}
memset(up, -1, sizeof(up));
int rt = initCatersianTree(0, N-1);
dfs(rt);
// FOR(i, 0, N) cout << up[0][i] << " \n"[i == N-1];
for(int i = 1; (1 << i) < N; ++i){
FOR(j, 0, N){
if(up[i-1][j] == -1) up[i][j] = -1;
else up[i][j] = up[i-1][up[i-1][j]];
}
}
cin >> M;
ll sum = 0;
FOR(i, 0, M){
int X, Y, C;
cin >> X >> Y >> C;
--X;
sum += C;
int pos = X;
for(int i = 31 - __builtin_clz(N-1); i >= 0; --i){
if(up[i][pos] != -1 && A[up[i][pos]] < Y) pos = up[i][pos];
}
path[pos].eb(X, C);
}
FenwickTree::n = timer_dfs;
calc(rt);
cout << sum - dp[rt] << '\n';
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |