/**
* Solution by Charles Ran (polarity.sh)
* Date: 2025-03-08
* Contest: Baltic OI 2016
* Problem: park
**/
#include <bits/stdc++.h>
using namespace std;
using ull = unsigned long long;
using ll = long long;
using vi = vector<int>;
using vl = vector<ll>;
using pii = pair<int, int>;
#define pb push_back
#define rep(i, a, b) for(int i = (a); i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
const int MAX_N = 1e5 + 1;
const ll MOD = 1e9 + 7;
/**
* DS: Disjoint Set Union
* PURPOSE: Dynamically updates connectedness of graph by adding edges
* TIME: amortized O(a(N)) to query
*/
class DSU {
private:
vector<int> parents;
vector<int> sizes;
public:
DSU(int size) : parents(size), sizes(size, 1){
for (int i = 0; i < size; i++){
parents[i] = i;
}
}
int find(int x){
return (parents[x] == x ? x : (parents[x] = find(parents[x])));
}
bool unite(int a, int b){
int parentA = find(a);
int parentB = find(b);
if (parentA == parentB){
return false;
}
if (sizes[parentA] > sizes[parentB]){
swap(parentA, parentB);
}
sizes[parentB] += sizes[parentA];
parents[parentA] = parentB;
return true;
}
bool connected(int a, int b){
return find(a) == find(b);
}
};
struct Edge {
int i, j;
long double w;
bool operator<(const Edge &e) const { return w < e.w; }
};
void solve(){
int n, m; cin >> n >> m;
long double w, h; cin >> w >> h;
vector<Edge> edges;
vector<array<int, 3>> circles(n);
rep(i, 0, n){
int x, y, r;
cin >> x >> y >> r;
circles[i] = {x, y, r};
}
rep(i, 0, n){
auto &[x, y, r] = circles[i];
edges.pb({0, i + 4, (long double)x - r});
edges.pb({1, i + 4, (long double)y - r});
edges.pb({2, i + 4, w - x - r});
edges.pb({3, i + 4, h - y - r});
}
rep(i, 0, n){
rep(j, i + 1, n){
Edge e;
e.i = i + 4; e.j = j + 4;
long double xx = circles[i][0] - circles[j][0];
long double yy = circles[i][1] - circles[j][1];
e.w = sqrt(xx * xx + yy * yy) - circles[i][2] - circles[j][2];
edges.pb(e);
}
}
sort(all(edges));
vector<array<int, 3>> visitors(m);
rep(i, 0, m){
int r, e; cin >> r >> e;
visitors[i] = {2 * r, e, i};
}
sort(all(visitors));
int j = 0;
DSU dsu(n + 4);
vector<array<bool, 4>> ans(m);
rep(i, 0, m){
auto &[r, e, idx] = visitors[i];
while (j < edges.size() && edges[j].w <= r){
dsu.unite(edges[j].i, edges[j].j);
j++;
}
bool c01 = dsu.connected(0, 1);
bool c02 = dsu.connected(0, 2);
bool c03 = dsu.connected(0, 3);
bool c12 = dsu.connected(1, 2);
bool c13 = dsu.connected(1, 3);
bool c23 = dsu.connected(2, 3);
bool cant1 = false;
bool cant2 = false;
bool cant3 = false;
bool cant4 = false;
if (e == 1){
cant2 = c13 || c23;
cant3 = c13 || c02 || c12;
cant4 = c02 || c01;
} else if (e == 2){
cant1 = c13 || c03;
cant3 = c02 || c12;
cant4 = c02 || c13 || c01;
} else if (e == 3){
cant1 = c02 || c13 || c03;
cant2 = c02 || c23;
cant4 = c13 || c01;
} else {
cant1 = c02 || c03;
cant2 = c02 || c13 || c23;
cant3 = c13 || c12;
}
ans[idx] = {!cant1, !cant2, !cant3, !cant4};
}
rep(i, 0, m){
string a = "";
if (ans[i][0]) a += "1";
if (ans[i][1]) a += "2";
if (ans[i][2]) a += "3";
if (ans[i][3]) a += "4";
cout << a << endl;
}
}
int main(){
ios_base::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
solve();
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |