Submission #1158985

#TimeUsernameProblemLanguageResultExecution timeMemory
1158985panZemljište (COCI22_zemljiste)C++20
0 / 70
0 ms320 KiB
#include <bits/stdc++.h> //#include "includeall.h" #define endl '\n' #define f first #define s second #define pb push_back #define mp make_pair #define lb lower_bound #define ub upper_bound #define input(x) scanf("%lld", &x); #define input2(x, y) scanf("%lld%lld", &x, &y); #define input3(x, y, z) scanf("%lld%lld%lld", &x, &y, &z); #define input4(x, y, z, a) scanf("%lld%lld%lld%lld", &x, &y, &z, &a); #define print(x, y) printf("%lld%c", x, y); #define show(x) cerr << #x << " is " << x << endl; #define show2(x,y) cerr << #x << " is " << x << " " << #y << " is " << y << endl; #define show3(x,y,z) cerr << #x << " is " << x << " " << #y << " is " << y << " " << #z << " is " << z << endl; #define all(x) x.begin(), x.end() #define discretize(x) sort(x.begin(), x.end()); x.erase(unique(x.begin(), x.end()), x.end()); #define FOR(i, x, n) for (ll i =x; i<=n; ++i) #define RFOR(i, x, n) for (ll i =x; i>=n; --i) #pragma GCC optimize("O3","unroll-loops") using namespace std; mt19937_64 rnd(chrono::steady_clock::now().time_since_epoch().count()); typedef long long ll; typedef long double ld; typedef pair<ld, ll> pd; typedef pair<string, ll> psl; typedef pair<ll, ll> pi; typedef pair<pi, ll> pii; typedef pair<pi, pi> piii; ll dp[505][505]; // Returns the sum of the submatrix with top-left (x1, y1) and bottom-right (x2, y2) inline ll cal(ll x1, ll y1, ll x2, ll y2) { return dp[x2][y2] - dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1]; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); ll r, c, a, b; cin >> r >> c >> a >> b; // Build the prefix sum array for (ll i = 1; i <= r; ++i) { for (ll j = 1; j <= c; ++j) { cin >> dp[i][j]; dp[i][j] += dp[i-1][j] + dp[i][j-1] - dp[i-1][j-1]; } } ll ans = LLONG_MAX; // Iterate over all choices for bottom-right (i, j) and left column k for (ll i = 1; i <= r; ++i) { for (ll j = 1; j <= c; ++j) { for (ll k = 1; k <= j; ++k) { // Instead of binary searching for the optimal top row, // we use the observation that the best cost is determined // by the maximum (using top row 1) and minimum (using top row i) sums. ll S_top = cal(1, k, i, j); ll S_bot = cal(i, k, i, j); ll curCost; if(S_top < a) curCost = (a - S_top) + (b - S_top); else if(S_bot > b) curCost = (S_bot - a) + (S_bot - b); else curCost = b - a; // there is some x with F(x) in [a, b] ans = min(ans, curCost); } } } cout << ans << endl; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...