/* Slow solution to the task Treasure hunt
* Author: Jakub Radoszewski
* Date: 9.06.2011
* Time complexity: O(#calls * log^3(#calls + #nodes)).
* Description: a log^2 solution with too many maps.
*/
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <algorithm>
#include <cassert>
using namespace std;
#define LOG_2_MAX_CALLS 20
/* This node will be created if a path call appears */
int curr;
/*****************************************************************************/
/* Data structures */
/* An (implicit or explicit) node located dist units below the explicit node
* expl. */
typedef struct
{
int expl, dist;
} node;
inline bool operator==(const node &a, const node &b)
{
return a.expl == b.expl && a.dist == b.dist;
}
/* anc[v][i] = the ancestor of the node v located 2^i edges upwards. */
typedef struct
{
int node, dist;
} ancestor;
/* The ancestors of the nodes (anc[v][i] is the ancestor 2^i edges above)
* and their depths. */
map<int, vector<ancestor> > anc;
map<int, int> depth;
/* If v is the upper end of an edge, attached[v] is the node to which
* it is directly attached. Otherwise attached[v].node == -1. */
map<int, node> attached;
/* If expl_anc contains a pair (y, x) then x is the explicit ancestor of
* all the nodes x..y.
* Initially the set contains a sentinel pair (1, 1). */
set<pair<int, int> > expl_anc;
/*****************************************************************************/
/* Simple utility functions */
inline int get_depth(const node &a)
{
return depth[a.expl] + a.dist;
}
inline node get_node(int a)
{
node v;
v.expl = expl_anc.lower_bound(make_pair(a, -1))->second;
v.dist = a - v.expl;
return v;
}
/*****************************************************************************/
/* Important utility functions */
/* Computes anc[a], starting with anc[a][0] = par. */
inline void compute_anc(int a, int par, int len)
{
ancestor v;
v.node = par;
v.dist = len;
anc[a].push_back(v);
for (int i = 0; i < LOG_2_MAX_CALLS; i++)
{
v.node = anc[anc[a][i].node][i].node;
v.dist = anc[a][i].dist + anc[anc[a][i].node][i].dist;
anc[a].push_back(v);
}
}
/* Auxiliary function, only on explicit nodes. */
inline node go_up(int a, int h)
{
/* Finding the highest explicit node located at most h units above a. */
vector<ancestor> &t = anc[a];
int i = 0;
while (i + 1 < (int)t.size() && t[i + 1].dist <= h)
i++;
while (i >= 0)
{
ancestor &p = anc[a][i];
if (p.dist <= h)
{
h -= p.dist;
a = p.node;
}
i--;
}
/* The final touch: finding the potentially implicit node. */
node b;
if (!h)
{
b.expl = a;
b.dist = 0;
return b;
}
node p = attached[a];
if (p.expl == -1) /* a is the lower end of its edge */
{
b.expl = anc[a][0].node;
b.dist = (a - b.expl) - h;
} else /* a is the upper end of its edge */
{
h--;
b.expl = p.expl;
b.dist = p.dist - h;
}
return b;
}
/* Advances the distance h up, starting from the node a. */
inline node go_up(node a, int h)
{
if (h <= a.dist)
{
node b = a;
b.dist = a.dist - h;
return b;
}
return go_up(a.expl, h - a.dist);
}
inline node lca(node a, node b)
{
/* Equalizing depths */
int da = get_depth(a), db = get_depth(b);
if (da < db)
{
swap(a, b);
swap(da, db);
}
a = go_up(a, da - db);
if (a == b)
return a;
/* Finding LCA */
int lo = 1, hi = db;
while (lo < hi)
{
int med = (lo + hi) / 2;
if (go_up(a, med) == go_up(b, med))
hi = med;
else
lo = med + 1;
}
return go_up(a, lo);
}
/*****************************************************************************/
void init()
{
depth[1] = 0;
ancestor a;
a.node = 1;
a.dist = 0;
for (int i = 0; i < LOG_2_MAX_CALLS; i++)
anc[1].push_back(a); /* sentinel */
expl_anc.insert(make_pair(1, 1));
curr = 2;
}
/*****************************************************************************/
void path(int a, int s)
{
node v = get_node(a);
int start = curr, end = curr + s - 1;
depth[start] = depth[v.expl] + v.dist + 1;
depth[end] = depth[start] + s - 1;
compute_anc(start, v.expl, v.dist + 1);
if (start != end)
compute_anc(end, start, s - 1);
attached[start] = v;
if (start != end)
attached[end].expl = -1;
if (start != end)
expl_anc.insert(make_pair(end - 1, start));
expl_anc.insert(make_pair(end, end));
curr = end + 1;
}
/*****************************************************************************/
int dig(int a, int b)
{
node na = get_node(a), nb = get_node(b);
node v = lca(na, nb);
int da = depth[na.expl] + na.dist;
int db = depth[nb.expl] + nb.dist;
int dv = depth[v.expl] + v.dist;
int len = da + db - 2 * dv;
int pos = len / 2;
node res;
if (pos <= da - dv)
res = go_up(na, pos);
else
res = go_up(nb, len - pos);
return res.expl + res.dist;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
7 ms |
376 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
17 ms |
632 KB |
Output is correct |
2 |
Correct |
17 ms |
1656 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4038 ms |
141864 KB |
Time limit exceeded |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3936 ms |
34628 KB |
Output is correct |
2 |
Execution timed out |
4009 ms |
105500 KB |
Time limit exceeded |
3 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4030 ms |
67492 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4022 ms |
98668 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4034 ms |
55336 KB |
Time limit exceeded |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4037 ms |
153128 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4034 ms |
99680 KB |
Time limit exceeded |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
4042 ms |
107764 KB |
Time limit exceeded |