Submission #1151416

#TimeUsernameProblemLanguageResultExecution timeMemory
1151416aintaReconstruction Project (JOI22_reconstruction)C++20
0 / 100
0 ms324 KiB
#include <bits/stdc++.h> using namespace std; typedef long long ll; // ---------- DSU (Disjoint Set Union) for MST ---------- struct DSU { vector<int> par; DSU(int n) : par(n){ for (int i = 0; i < n; i++) par[i] = i; } int find(int a){ return par[a]==a ? a : par[a]=find(par[a]); } bool unite(int a, int b){ a = find(a); b = find(b); if(a==b)return false; par[b]=a; return true; } }; // ---------- Edge structure ---------- struct Edge { int u, v; ll w; }; // Global graph parameters int N, M; // We store edges in two orders: // - edgesAsc: sorted in increasing order of w // - edgesDesc: sorted in decreasing order of w vector<Edge> edgesAsc, edgesDesc; // ---------- MST computation for a fixed target X ---------- // For a given X, the cost to reconstruct an edge of original width w is: // cost = (X - w) if w <= X (slope +1) // cost = (w - X) if w > X (slope -1) // We “merge” the two sorted lists (one for edges with w <= X and one for w > X) // in order of increasing |w - X|. Then we run a DSU–based MST algorithm over that merged order. // We also count how many chosen edges satisfy w <= X. pair<ll,int> computeMST(ll X) { int nEdges = 0; ll totCost = 0; int cntLE = 0; // count edges with w <= X chosen in MST DSU dsu(N); int iAsc = 0, iDesc = 0; int szAsc = edgesAsc.size(), szDesc = edgesDesc.size(); // Merge on–the–fly the two lists: from edgesDesc we take those with w <= X (cost = X - w), // from edgesAsc we take those with w > X (cost = w - X). while(nEdges < N-1 && (iAsc < szAsc || iDesc < szDesc)){ ll costDesc = LLONG_MAX; if(iDesc < szDesc && edgesDesc[iDesc].w <= X) costDesc = X - edgesDesc[iDesc].w; ll costAsc = LLONG_MAX; if(iAsc < szAsc && edgesAsc[iAsc].w > X) costAsc = edgesAsc[iAsc].w - X; bool useDesc = false; if(costDesc <= costAsc) useDesc = true; if(costDesc==LLONG_MAX && costAsc==LLONG_MAX) break; Edge cur; if(useDesc){ cur = edgesDesc[iDesc++]; } else { cur = edgesAsc[iAsc++]; } if(dsu.unite(cur.u, cur.v)){ totCost += (cur.w <= X ? (X - cur.w) : (cur.w - X)); nEdges++; if(cur.w <= X) cntLE++; } } // (The graph is connected so we always can choose N-1 edges.) if(nEdges < N-1) return {LLONG_MAX,0}; return {totCost, cntLE}; } // ---------- Main ---------- int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cin >> N >> M; vector<Edge> edges(M); for (int i=0; i<M; i++){ int u,v; ll w; cin >> u >> v >> w; u--; v--; // convert to 0-index edges[i] = {u,v,w}; } // Build sorted arrays: edgesAsc = edges; sort(edgesAsc.begin(), edgesAsc.end(), [](const Edge &a, const Edge &b){ return a.w < b.w; }); edgesDesc = edges; sort(edgesDesc.begin(), edgesDesc.end(), [](const Edge &a, const Edge &b){ return a.w > b.w; }); // Build candidate X values. // We include 1 and 10^9 (the endpoints) plus every distinct edge weight. set<ll> candSet; candSet.insert(1); candSet.insert(1000000000LL); for(auto &e : edges) { candSet.insert(e.w); } vector<ll> candidates(candSet.begin(), candSet.end()); int K = candidates.size(); // For each candidate X, compute f(X) = MST cost and the derivative d = 2*(# edges with w<=X) - (N-1) vector<ll> fval(K), deriv(K); for (int i=0; i<K; i++){ ll X = candidates[i]; auto res = computeMST(X); fval[i] = res.first; deriv[i] = 2LL * res.second - (N - 1); } // Now, between any two candidate points candidates[i] and candidates[i+1], // the MST remains the same so that for any X in that interval // f(X) = fval[i] + deriv[i]*(X - candidates[i]). // (Because f is convex and piecewise linear.) // Process queries. int Q; cin >> Q; // The Q queries (target widths) are given in strictly increasing order. // For each query, binary search which candidate interval it falls into. for (int qi = 0; qi < Q; qi++){ ll X; cin >> X; int idx = (int)(upper_bound(candidates.begin(), candidates.end(), X) - candidates.begin()) - 1; if(idx < 0) idx = 0; if(idx >= K) idx = K-1; ll ans = fval[idx] + deriv[idx] * (X - candidates[idx]); cout << ans << "\n"; } return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...