Submission #1146130

#TimeUsernameProblemLanguageResultExecution timeMemory
1146130monkey133Team Coding (EGOI24_teamcoding)C++20
23 / 100
4094 ms36320 KiB
#include <bits/stdc++.h> using namespace std; //–––––– Typedefs and Macros –––––– typedef int ll; // adjust if needed (using int for indices) typedef pair<ll, ll> pi; #define pb push_back #define mp make_pair const ll MAXN = 100005; //–––––– Global Variables –––––– ll n, k, label = 0; ll color[MAXN], par[MAXN], in[MAXN], out[MAXN], cnt[MAXN], dep[MAXN], big[MAXN]; vector<ll> adj[MAXN], nodelist[MAXN]; // For each color, record all encountered depths (to later sort & unique) vector<ll> deplist[MAXN]; // Instead of unordered_maps, we now store frequency tables as sorted vectors of (depth, frequency) pairs. vector<vector<pi>> dp(MAXN), dp2(MAXN), dp3(MAXN), dp4(MAXN), dp5(MAXN); // Global frequency table for each color (by depth). Index: color vector<vector<pi>> colMapVec; // Final answer stored as (res, -swaps) so that lexicographical max works. pi ans = mp(-1000000000, -1000000000); //–––––– Helper Functions for Sorted Frequency Tables –––––// // Binary search: return frequency for key in sorted vector v, or 0 if not found. inline int getValue(const vector<pi>& v, int key) { int lo = 0, hi = (int)v.size() - 1; while (lo <= hi) { int mid = (lo + hi) >> 1; if (v[mid].first == key) return v[mid].second; else if (v[mid].first < key) lo = mid + 1; else hi = mid - 1; } return 0; } // Insert or update key in sorted vector v by adding val. inline void addValue(vector<pi>& v, int key, int val) { auto it = std::lower_bound(v.begin(), v.end(), mp(key, 0)); if (it != v.end() && it->first == key) it->second += val; else v.insert(it, mp(key, val)); } // Merge two sorted frequency vectors: merge src into dest. inline void mergeVectors(vector<pi>& dest, const vector<pi>& src) { vector<pi> merged; merged.reserve(dest.size() + src.size()); int i = 0, j = 0; while (i < (int)dest.size() && j < (int)src.size()){ if (dest[i].first == src[j].first) { merged.pb(mp(dest[i].first, dest[i].second + src[j].second)); i++; j++; } else if (dest[i].first < src[j].first) { merged.pb(dest[i]); i++; } else { merged.pb(src[j]); j++; } } while (i < (int)dest.size()){ merged.pb(dest[i]); i++; } while (j < (int)src.size()){ merged.pb(src[j]); j++; } dest = move(merged); } //–––––– Iterative DFS for Euler Tour (Computes in[], out[], dep[]) –––––// void iterativeDFS_precomp1() { vector<int> st; vector<int> ptr(n, 0); // pointer for each node's child index dep[0] = 0; st.pb(0); while (!st.empty()) { int u = st.back(); // First time visiting u: record entry time and add its depth to deplist. if (ptr[u] == 0) { in[u] = ++label; deplist[color[u]].pb(dep[u]); } if (ptr[u] < (int)adj[u].size()) { int v = adj[u][ptr[u]++]; dep[v] = dep[u] + 1; st.pb(v); } else { out[u] = label; st.pop_back(); } } } //–––––– Get Postorder Order (Iterative) –––––// vector<int> getPostorder() { vector<int> post; vector<int> st; st.pb(0); while(!st.empty()){ int u = st.back(); st.pop_back(); post.pb(u); for (int v : adj[u]) st.pb(v); } reverse(post.begin(), post.end()); return post; } //–––––– Precomp2: DSU-on-Tree Merging Using Sorted Vectors (Iterative Postorder) –––––// void precomp2_iterative() { // Initialize global frequency table for each color. colMapVec.assign(k, vector<pi>()); for (int u = 0; u < n; u++) { addValue(colMapVec[color[u]], dep[u], 1); } vector<int> post = getPostorder(); // Process nodes in postorder (children before parent). for (int u : post) { // Merge each child's dp into dp[u]. for (int v : adj[u]) { if (dp[u].size() < dp[v].size()) swap(dp[u], dp[v]); mergeVectors(dp[u], dp[v]); dp[v].clear(); } // Add the current node. addValue(dp[u], dep[u], 1); // For “small” colors, build dp2[u] using only the depths that appear for that color. if (!big[color[u]]) { for (int d : deplist[color[u]]) { int freq = getValue(dp[u], d); if (freq > 0) addValue(dp2[u], d, freq); } } } } //–––––– Solve for “big” colors using Iterative Postorder Merging for dp4/dp5 –––––// void solve_big_iterative(int c) { // Build a "yes" array: yes[u] is true if none of u's ancestors (excluding u) has color c. vector<bool> yes(n, false); { vector<int> st; vector<int> ptr(n, 0); yes[0] = true; st.pb(0); while(!st.empty()){ int u = st.back(); if(ptr[u] < (int)adj[u].size()){ int v = adj[u][ptr[u]++]; yes[v] = yes[u] && (color[u] != c); st.pb(v); } else { st.pop_back(); } } } vector<int> post = getPostorder(); // Clear dp4 and dp5 for all nodes. for (int u = 0; u < n; u++){ dp4[u].clear(); dp5[u].clear(); } // Process nodes in postorder. for (int u : post) { if (yes[u] && color[u] == c) { int res = 0, res2 = 0; // For every unique depth for color c deeper than dep[u], compute contributions. for (int d : deplist[c]) { if(d <= dep[u]) continue; int a = getValue(dp4[u], d); int b = getValue(colMapVec[c], d); int take = (a < b ? a : b); res += take; int cval = getValue(dp5[u], d); res2 += (take > cval ? take - cval : 0); } ans = max(ans, mp(res, -res2)); } // Add the current node u. addValue(dp4[u], dep[u], 1); if(c == color[u]) addValue(dp5[u], dep[u], 1); // Merge u's dp4/dp5 into its parent (if not root). if(u != 0) { int p = par[u]; if (dp4[p].size() < dp4[u].size()) swap(dp4[p], dp4[u]); mergeVectors(dp4[p], dp4[u]); dp4[u].clear(); if (dp5[p].size() < dp5[u].size()) swap(dp5[p], dp5[u]); mergeVectors(dp5[p], dp5[u]); dp5[u].clear(); } } } //–––––– Solve for “small” colors –––––// void solve_small(int c) { int sz = (int)nodelist[c].size(); // For every pair of nodes of color c (where one is an ancestor of the other), // update dp3 for the ancestor. for (int i = 0; i < sz; i++) { for (int j = i + 1; j < sz; j++) { int x = nodelist[c][i], y = nodelist[c][j]; if (in[x] > in[y]) swap(x, y); if (in[x] <= in[y] && in[y] <= out[x]) addValue(dp3[x], dep[y], 1); } } // For each node of color c, combine dp2 and dp3 to update the candidate answer. for (int i = 0; i < sz; i++) { int x = nodelist[c][i]; int res = 0, res2 = 0; for (int d : deplist[c]) { if(d <= dep[x]) continue; int a = getValue(dp2[x], d); int b = getValue(colMapVec[c], d); int take = (a < b ? a : b); res += take; int cval = getValue(dp3[x], d); res2 += (take > cval ? take - cval : 0); } dp2[x].clear(); dp3[x].clear(); ans = max(ans, mp(res, -res2)); } } //–––––– Main Function –––––// int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n >> k; // Resize global frequency table vector for each color. colMapVec.resize(k); // Read node colors and fill nodelist and frequency counts. for (int i = 0; i < n; i++){ cin >> color[i]; cnt[color[i]]++; nodelist[color[i]].pb(i); } // Mark "big" colors: here using a threshold (blkThreshold). const int blkThreshold = 316; // can adjust threshold as needed for (int i = 0; i < k; i++){ if (cnt[i] > blkThreshold) big[i] = 1; } // Read parent pointers and build tree. (Assuming input is 0-indexed.) for (int i = 1; i < n; i++){ cin >> par[i]; adj[par[i]].pb(i); } // Compute Euler Tour iteratively: fill in[], out[], dep[] and deplist. iterativeDFS_precomp1(); // For each color, sort and unique the deplist. for (int i = 0; i < k; i++){ sort(deplist[i].begin(), deplist[i].end()); deplist[i].erase(unique(deplist[i].begin(), deplist[i].end()), deplist[i].end()); } // Build dp and dp2 using DSU-on-tree merging (iterative postorder). precomp2_iterative(); // Process each color: if color is "big" use iterative DFS merging (dp4/dp5), else use solve_small. for (int c = 0; c < k; c++){ if (big[c]) { solve_big_iterative(c); } else { solve_small(c); } } // Output final answer (note: answer is stored as (res, -swaps) so we output ans.first+1 and -ans.second). cout << ans.first + 1 << " " << -ans.second << "\n"; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...