Submission #1132080

#TimeUsernameProblemLanguageResultExecution timeMemory
1132080mrsmartypantsMobile (BOI12_mobile)C++17
65 / 100
1095 ms16980 KiB
#include <bits/stdc++.h> using namespace std; struct Point { double x, y; Point() : x(0), y(0) {} Point(double x, double y) : x(x), y(y) {} }; // Function to calculate the critical point double criticalPoint(Point a, Point b) { return (a.x * a.x - b.x * b.x + a.y * a.y - b.y * b.y) / (2 * (a.x - b.x)); } // Function to calculate the distance between two points double dist(Point a, Point b) { return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); } int main() { ios::sync_with_stdio(false); cin.tie(0); int N, L; cin >> N >> L; vector<Point> needed; // Used instead of LinkedList in Java for (int i = 0; i < N; i++) { Point cur; cin >> cur.x >> cur.y; if (cur.y < 0) cur.y = -cur.y; // Treat negative y the same as positive y // Remove points with the same x-coordinate but further away y-coordinates if (!needed.empty() && needed.back().x == cur.x) { if (cur.y >= needed.back().y) { continue; } else { needed.pop_back(); } } // Find the crosses and remove points that don't form a convex shape while (needed.size() > 1 && criticalPoint(needed[needed.size() - 2], needed.back()) > criticalPoint(needed.back(), cur)) { needed.pop_back(); } needed.push_back(cur); } // Remove points from the front that have critical points less than 0 while (needed.size() > 1 && criticalPoint(needed[0], needed[1]) < 0) { needed.erase(needed.begin()); } // Remove points from the back that exceed the length L while (needed.size() > 1 && criticalPoint(needed[needed.size() - 2], needed.back()) > L) { needed.pop_back(); } double ans = 0; // Loop over the points and calculate the maximum distance for (int x = 0; x < needed.size(); x++) { Point left(0, 0); Point right(L, 0); if (x > 0) left.x = criticalPoint(needed[x], needed[x - 1]); if (x < needed.size() - 1) { right.x = criticalPoint(needed[x], needed[x + 1]); } // If points are out of bounds, skip if (left.x < 0 || right.x > L || right.x < 0 || left.x > L) continue; // Update the answer with the maximum distance ans = max(ans, max(dist(needed[x], left), dist(needed[x], right))); } cout << fixed << ans << "\n"; return 0; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...