제출 #1129437

#제출 시각아이디문제언어결과실행 시간메모리
1129437CutSandstoneTorrent (COI16_torrent)C++20
100 / 100
389 ms25312 KiB
#include <bits/stdc++.h> #define vi vector<int> #define vb vector<bool> #define vl vector<ll> #define vii vector<vector<int>> #define vll vector<vector<ll>> #define pi pair<int, int> #define pl pair<ll, ll> #define vpi vector<pair<int, int>> #define vpl vector<pair<ll, ll>> #define a first #define b second #define pb push_back #define vm vector<mi> #define vmm vector<vector<mi>> using namespace std; const int MOD = 998244353; using ll = long long; using big = __int128_t; using ld = long double; int uMin(int& a, int b){return a = min(a,b);} int uMax(int& a, int b){return a = max(a,b);} struct mi { ll v; explicit operator int() const { return v; } mi() { v = 0; } mi(ll _v) : v(_v % MOD) { v += (v < 0) * MOD; } bool operator<(const mi& other) const { return v < other.v; } friend std::ostream& operator<<(std::ostream& os, const mi& m) { os << m.v; return os; } }; mi &operator+=(mi &a, mi b) { if ((a.v += b.v) >= MOD) a.v -= MOD; return a; } mi &operator-=(mi &a, mi b) { if ((a.v -= b.v) < 0) a.v += MOD; return a; } mi operator+(mi a, mi b) { return a += b; } mi operator-(mi a, mi b) { return a -= b; } mi operator*(mi a, mi b) { return mi(a.v * b.v); } mi &operator*=(mi &a, mi b) { return a = a * b; } mi pow(mi a, ll p) { assert(p >= 0); return p == 0 ? 1 : pow(a * a, p / 2) * (p & 1 ? a : 1); } mi inv(mi a) { assert(a.v != 0); return pow(a, MOD - 2); } mi operator/(mi a, mi b) { return a * inv(b); } bool operator==(mi a, mi b) {return a.v == b.v;} bool operator!=(mi a, mi b) {return a.v != b.v;} template <class T> class Matrix { private: vector<std::vector<T>> data; size_t size; public: Matrix(size_t n, T v = T()) : size(n), data(n, std::vector<T>(n, v)) {} Matrix(const Matrix<T>& other) : size(other.size), data(other.data) {} T& operator()(size_t i, size_t j) { return data[i][j]; } const T& operator()(size_t i, size_t j) const { return data[i][j]; } Matrix<T> operator+(const Matrix<T>& other) const { Matrix<T> result(size); for (size_t i = 0; i < size; ++i) for (size_t j = 0; j < size; ++j) result(i, j) = data[i][j] + other(i, j); return result; } Matrix<T> operator*(const Matrix<T>& other) const { Matrix<T> result(size, 0); for (size_t i = 0; i < size; ++i) for (size_t j = 0; j < size; ++j) for (size_t k = 0; k < size; ++k) result(i, k) += data[i][j] * other(j, k); return result; } std::vector<T> operator*(const std::vector<T>& vec) const { std::vector<T> result(size, 0); for (size_t i = 0; i < size; ++i) for (size_t j = 0; j < size; ++j) result[j] += data[i][j] * vec[i]; return result; } Matrix<T> pow(ll e) const { Matrix<T> result = identity(size); Matrix<T> base = *this; while(e) { if(e&1) result = result * base; base = base * base; e>>=1; } return result; } bool operator==(const Matrix<T>& other) const { for (size_t i = 0; i < size; ++i) for (size_t j = 0; j < size; ++j) if (data[i][j] != other(i, j)) return false; return true; } static Matrix<T> identity(size_t n) { Matrix<T> id(n, 0); for (size_t i = 0; i < n; ++i) id(i, i) = 1; return id; } friend std::ostream& operator<<(std::ostream& os, const Matrix<T>& matrix) { os << "[\n"; for (const auto& row : matrix.data) { os << "\t["; for(int i = 0; i<row.size(); i++) os << row[i] << (i==row.size()-1?"]\n":", "); } os << "]\n"; return os; } }; template <class T> class BIT { int N; vector<T> data; public: BIT(int _N){ N = _N+1; data.resize(N); } void add(int p, T x) { for (p++;p<=N;p+=p&-p) data[p-1]+=x; } T sum(int l, int r) { return sum(r)-(l==0?0:sum(l-1)); } T sum(int r) { T s = 0; r++; for(;r;r-=r&-r)s+=data[r-1]; return s; } int lower_bound(T sum) { if (sum <= 0) return -1; int pos = 0; for (int pw = 1<<25; pw; pw >>= 1) { int npos = pos+pw; if (npos <= N && data[npos-1] < sum) pos = npos, sum -= data[pos-1]; } return pos; } }; template <class T> class RURQ { BIT<T> bit1, bit2; int sz; RURQ(int size) : sz(size), bit1(size), bit2(size) {} void add(int start, int end, T value) { bit1.add(start, value); bit2.add(start, value*(start - 1)); if(end != sz-1){ bit1.add(end+1, -value); bit2.add(end+1, -value*end); } } T pref(int index) { if(index==-1) return 0; return (bit1.sum(index))*index-bit2.sum(index); } T sum(int start, int end) { return pref(end)-pref(start-1); } }; struct Line { mutable ll k, m, p; bool operator<(const Line& o) const { return k < o.k; } bool operator<(ll x) const { return p < x; } }; struct LineContainer : multiset<Line, less<>> { // (for doubles, use inf = 1/.0, div(a,b) = a/b) static const ll inf = LLONG_MAX; ll div(ll a, ll b) { // floored division return a / b - ((a ^ b) < 0 && a % b); } bool isect(iterator x, iterator y) { if (y == end()) return x->p = inf, 0; if (x->k == y->k) x->p = x->m > y->m ? inf : -inf; else x->p = div(y->m - x->m, x->k - y->k); return x->p >= y->p; } void add(ll k, ll m) { auto z = insert({k, m, 0}), y = z++, x = y; while (isect(y, z)) z = erase(z); if (x != begin() && isect(--x, y)) isect(x, y = erase(y)); while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y)); } ll queryMax(ll x) { assert(!empty()); auto l = *lower_bound(x); return l.k * x + l.m; } }; vl euclid(ll a, ll b) { vl x = {1, 0, a}; vl y = {0, 1, b}; while(y[2]){ ll k = x[2] / y[2]; x[0]-=k*y[0]; x[1]-=k*y[1]; x[2]-=k*y[2]; swap(x, y); } return x; // x[0] * a + x[1] * b = x[2], x[2] = gcd(a, b) } pl modSolver(vpl& mods){ pl ans = {mods[0].a,mods[0].b}; for(int i = 1; i<mods.size(); i++){ vl g = euclid(ans.b, mods[i].b); if((mods[i].a-ans.a)%g[2]) return {-1,-1}; ans.a+=(mods[i].a-ans.a)/g[2]*ans.b*g[0]; ans.b = ans.b/g[2]*mods[i].b; ans.a%=ans.b; ans.a+=ans.b; ans.a%=ans.b; } return ans; } int sq(ll n){ ll a = 0; for(int i = 31; i>=0; i--){ ll x = 1<<i|a; if(x*x <= n) a = x; } return a; } int dGet(int a, vi& d){return d[a]<0?a:(d[a]=dGet(d[a],d));} bool unite(int a, int b, vi& d){ a = dGet(a,d), b = dGet(b,d); if(a == b) return 0; if(d[a]>d[b]) swap(a,b); d[a]+=d[b]; d[b] = a; return 1; } int lg(int n){ int i = 0; for(n>>=1; n; n>>=1) i++; return i; } vector<int> manacher_odd(string s) { int n = s.size(); s = "$" + s + "^"; vector<int> p(n + 2); int l = 1, r = 1; for(int i = 1; i <= n; i++) { p[i] = max(0, min(r - i, p[l + (r - i)])); while(s[i - p[i]] == s[i + p[i]]) { p[i]++; } if(i + p[i] > r) { l = i - p[i], r = i + p[i]; } } return vector<int>(begin(p) + 1, end(p) - 1); } vector<int> manacher(string s) { string t; for(auto c: s) { t += string("#") + c; } auto res = manacher_odd(t + "#"); return vector<int>(begin(res) + 1, end(res) - 1); } template <class T> struct ST { vector<T> tree; vi left,right; int n; ST(int N) : n(N){ tree.pb(0); left.pb(-1); right.pb(-1); } void upd(int l, int r, int ind, int s, T x, bool add){ if(l == r){ if(add) tree[ind]+=x; else tree[ind] = x; return; } int m = l+((r-l)>>1); if(s<=m){ if(left[ind] == -1){ left[ind] = tree.size(); tree.pb(0); left.pb(-1); right.pb(-1); } upd(l,m,left[ind],s,x,add); }else{ if(right[ind] == -1){ right[ind] = tree.size(); tree.pb(0); left.pb(-1); right.pb(-1); } upd(m+1,r,right[ind],s,x,add); } if(left[ind] == -1) tree[ind] = tree[right[ind]]; else if(right[ind] == -1) tree[ind] = tree[left[ind]]; else tree[ind] = tree[left[ind]]+tree[right[ind]]; } void add(int s, T x){ upd(0,n-1,0,s,x,1); } void set(int s, T x){ upd(0,n-1,0,s,x,0); } T sum(int cL, int cR, int ind, int l, int r){ if(cL == l && cR == r) return tree[ind]; int m = cL+((cR-cL)>>1); if(r<=m) return sum(cL,m,left[ind],l,r); if(l>m) return sum(m+1,cR,right[ind],l,r); if(left[ind] == -1) return sum(m+1,cR,right[ind],m+1,r); if(right[ind] == -1) return sum(cL,m,left[ind],l,m); return sum(cL,m,left[ind],l,m)+sum(m+1,cR,right[ind],m+1,r); } T sum(int l, int r){ return sum(0,n-1,0,l,r); } }; ll square(ll a) { return a * a; } ll norm(const pl& p) { return square(p.a) + square(p.b); } ll cross(const pl& a, const pl& b) { return a.a * b.b - a.b * b.a; } ll cross(const pl& p, const pl& a, const pl& b) { return cross({a.a-p.a,a.b-p.b},{b.a-p.a,b.b-p.b}); } vi hullInd(const vpl& v) { int ind = min_element(v.begin(), v.end()) - v.begin(); vi cand, hull{ind}; for (int i = 0; i<v.size(); i++) if (v[i] != v[ind]) cand.push_back(i); sort(cand.begin(), cand.end(), [&](int a, int b) { pl x = {v[a].a-v[ind].a,v[a].b-v[ind].b}, y = {v[b].a-v[ind].a,v[b].b-v[ind].b}; ll t = cross(x, y); return t != 0 ? t > 0 : norm(x) < norm(y); }); for (int c : cand) { while (hull.size() > 1 && cross(v[hull[hull.size() - 2]], v[hull.back()], v[c]) <= 0) hull.pop_back(); hull.push_back(c); } return hull; } typedef unsigned long long ull; ull modmul(ull a, ull b, ull M) { ll ret = a * b - M * ull(1.L / M * a * b); return ret + M * (ret < 0) - M * (ret >= (ll)M); } ull modpow(ull b, ull e, ull mod) { ull ans = 1; for (; e; b = modmul(b, b, mod), e /= 2) if (e & 1) ans = modmul(ans, b, mod); return ans; } bool isPrime(ull n) { if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3; ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}, s = __builtin_ctzll(n-1), d = n >> s; for (ull a : A) { ull p = modpow(a%n, d, n), i = s; while (p != 1 && p != n - 1 && a % n && i--) p = modmul(p, p, n); if (p != n-1 && i != s) return 0; } return 1; } ull pollard(ull n) { ull x = 0, y = 0, t = 30, prd = 2, i = 1, q; auto f = [&](ull x) { return modmul(x, x, n) + i; }; while (t++ % 40 || __gcd(prd, n) == 1) { if (x == y) x = ++i, y = f(x); if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q; x = f(x), y = f(f(y)); } return __gcd(prd, n); } vector<ull> factor(ull n) { if (n == 1) return {}; if (isPrime(n)) return {n}; ull x = pollard(n); auto l = factor(x), r = factor(n / x); l.insert(l.end(),r.begin(),r.end()); return l; } template<class F> std::vector<int> smawck(F f, const std::vector<int> &rows, const std::vector<int> &cols) { std::vector<int> ans(rows.size(), -1); if((int) std::max(rows.size(), cols.size()) <= 2) { for(int i = 0; i < (int) rows.size(); i++) { for(auto j : cols) { if(ans[i] == -1 || f(rows[i], ans[i], j)) { ans[i] = j; } } } } else if(rows.size() < cols.size()) { std::vector<int> st; for(int j : cols) { while(1) { if(st.empty()) { st.push_back(j); break; } else if(f(rows[(int) st.size() - 1], st.back(), j)) { st.pop_back(); } else if(st.size() < rows.size()) { st.push_back(j); break; } else { break; } } } ans = smawck(f, rows, st); } else { std::vector<int> newRows; for(int i = 1; i < (int) rows.size(); i += 2) { newRows.push_back(rows[i]); } auto otherAns = smawck(f, newRows, cols); for(int i = 0; i < (int) newRows.size(); i++) { ans[2*i+1] = otherAns[i]; } for(int i = 0, l = 0, r = 0; i < (int) rows.size(); i += 2) { if(i+1 == (int) rows.size()) r = (int) cols.size(); while(r < (int) cols.size() && cols[r] <= ans[i+1]) r++; ans[i] = cols[l++]; for(; l < r; l++) { if(f(rows[i], ans[i], cols[l])) { ans[i] = cols[l]; } } l--; } } return ans; } template<class F> std::vector<int> smawck(F f, int n, int m) { std::vector<int> rows(n), cols(m); for(int i = 0; i < n; i++) rows[i] = i; for(int i = 0; i < m; i++) cols[i] = i; return smawck(f, rows, cols); } template<class T> std::vector<T> MaxConvolutionWithConvexShape(std::vector<T> anyShape, const std::vector<T> &convexShape) { if((int) convexShape.size() <= 1) return anyShape; if(anyShape.empty()) anyShape.push_back(0); int n = (int) anyShape.size(), m = (int) convexShape.size(); auto function = [&](int i, int j) { return anyShape[j] + convexShape[i-j]; }; auto comparator = [&](int i, int j, int k) { if(i < k) return false; if(i - j >= m) return true; return function(i, j) <= function(i, k); }; const std::vector<int> best = smawck(comparator, n + m - 1, n); std::vector<T> ans(n + m - 1); for(int i = 0; i < n + m - 1; i++) { ans[i] = function(i, best[i]); } return ans; } int kadane(vi& a, int l, int r){ int sum = 0, best = 0; for(int i = l; i<=r; i++){ sum = max(sum,0)+a[i]; uMax(best,sum); } return best; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n,a,b; cin >> n >> a >> b; a--,b--; vii g(n); for(int i = 1; i<n; i++){ int x,y; cin >> x >> y; g[--x].pb(--y); g[y].pb(x); } vi depth(n); function<void(int,int)> dfs1; dfs1 = [&](int s, int p){ if(p != -1) depth[s] = depth[p]+1; for(int i: g[s]) if(i != p) dfs1(i,s); }; dfs1(a,-1); vi path{b}; while(path[path.size()-1] != a) for(int i: g[path[path.size()-1]]) if(depth[i]+1 == depth[path[path.size()-1]]){ path.pb(i); break; } function<int(int,int,int)> dfs2; dfs2 = [&](int s, int p, int stop){ vi next; for(int i: g[s]) if(i != p && i != stop) next.pb(dfs2(i,s,stop)); sort(next.rbegin(),next.rend()); int ans = 0; for(int i = 0; i<next.size(); i++) uMax(ans,next[i]+i); return ans+1; }; int lo = 0, hi = path.size()-2; while(lo<hi-1){ int m = (lo+hi)>>1; int a1 = dfs2(b,-1,path[m+1]); int a2 = dfs2(a,-1,path[m]); if(a1<a2) lo = m; else hi = m; } cout << min(max(dfs2(b,-1,path[lo+1]),dfs2(a,-1,path[lo])),max(dfs2(b,-1,path[hi+1]),dfs2(a,-1,path[hi])))-1 << "\n"; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...