#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ld long double
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
mt19937 rng((long long) (new char));
const int base = 1000000000;
const int base_digits = 9;
struct bigint {
vector<int> a;
int sign;
bigint() :
sign(1) {
}
bigint(long long v) {
*this = v;
}
bigint(const string &s) {
read(s);
}
int get() {
int x = 0;
for (auto i : a) {
x = x * 10 + i;
}
return x;
}
void operator=(const bigint &v) {
sign = v.sign;
a = v.a;
}
void operator=(long long v) {
sign = 1;
if (v < 0)
sign = -1, v = -v;
for (; v > 0; v = v / base)
a.push_back(v % base);
}
bigint operator+(const bigint &v) const { //Addition Operation
if (sign == v.sign) {
bigint res = v;
for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) {
if (i == (int) res.a.size())
res.a.push_back(0);
res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
carry = res.a[i] >= base;
if (carry)
res.a[i] -= base;
}
return res;
}
return *this - (-v);
}
bigint operator-(const bigint &v) const { //Subtraction Function
if (sign == v.sign) {
if (abs() >= v.abs()) {
bigint res = *this;
for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
carry = res.a[i] < 0;
if (carry)
res.a[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
void operator*=(int v) { //Multiplication Function
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) {
if (i == (int) a.size())
a.push_back(0);
long long cur = a[i] * (long long) v + carry;
carry = (int) (cur / base);
a[i] = (int) (cur % base);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
}
trim();
}
bigint operator*(int v) const {
bigint res = *this;
res *= v;
return res;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
int norm = base / (b1.a.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.a.resize(a.a.size());
for (int i = a.a.size() - 1; i >= 0; i--) {
r *= base;
r += a.a[i];
int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
int d = ((long long) base * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
bigint operator/(const bigint &v) const { //Division Function
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const { //Modulus Operation
return divmod(*this, v).second;
}
void operator/=(int v) { //Shorthand Operation
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
long long cur = a[i] + rem * (long long) base;
a[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
}
bigint operator/(int v) const {
bigint res = *this;
res /= v;
return res;
}
int operator%(int v) const {
if (v < 0)
v = -v;
int m = 0;
for (int i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long) base) % v;
return m * sign;
}
void operator+=(const bigint &v) {
*this = *this + v;
}
void operator-=(const bigint &v) {
*this = *this - v;
}
void operator*=(const bigint &v) {
*this = *this * v;
}
void operator/=(const bigint &v) {
*this = *this / v;
}
bool operator<(const bigint &v) const {
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (int i = a.size() - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const bigint &v) const {
return v < *this;
}
bool operator<=(const bigint &v) const {
return !(v < *this);
}
bool operator>=(const bigint &v) const {
return !(*this < v);
}
bool operator==(const bigint &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const {
return *this < v || v < *this;
}
void trim() {
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const {
return a.empty() || (a.size() == 1 && !a[0]);
}
bigint operator-() const {
bigint res = *this;
res.sign = -sign;
return res;
}
bigint abs() const {
bigint res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const {
long long res = 0;
for (int i = a.size() - 1; i >= 0; i--)
res = res * base + a[i];
return res * sign;
}
void read(const string &s) { //Reading a Big Integer
sign = 1;
a.clear();
int pos = 0;
while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, bigint &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const bigint &v) {
if (v.sign == -1)
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int) v.a.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.a[i];
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) { //Multiplication using Karatsuba Algorithm
int n = a.size();
vll res(n + n);
if (n <= 32) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int) a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int) r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int) a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int) a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
bigint operator*(const bigint &v) const {
vector<int> a6 = convert_base(this->a, base_digits, 6);
vector<int> b6 = convert_base(v.a, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++) {
long long cur = c[i] + carry;
res.a.push_back((int) (cur % 1000000));
carry = (int) (cur / 1000000);
}
res.a = convert_base(res.a, 6, base_digits);
res.trim();
return res;
}
};
#define ll bigint
int n, L;
vector<vector<ll>> v;
vector<vector<ll>> pref;
struct Frac {
ll p;
ll q;
Frac(ll a = 0, ll b = 1) : p(a), q(b) {}
ll getIntValue() {
return p / q;
}
};
bool operator <= (Frac a, Frac b) {
return a.p * b.q <= a.q * b.p;
}
ll lcm(ll a, ll b) {
return a * b / __gcd(a, b);
}
Frac operator + (Frac a, Frac b) {
Frac c = {0, 0};
ll d = lcm(a.q, b.q);
c.p = a.p * (d / a.q) + b.p * (d / b.q);
c.q = d;
return c;
}
Frac operator - (Frac a, Frac b) {
assert(b <= a);
Frac c;
ll d = lcm(a.q, b.q);
c.p = a.p * (d / a.q) - b.p * (d / b.q);
c.q = d;
return c;
}
Frac operator * (int x, Frac f) {
return {f.p * x, f.q};
}
Frac operator / (Frac f, int x) {
return {f.p, f.q * x};
}
int32_t main() {
if (1) {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
}
cin >> n >> L;
v.assign(n + 1, vector<ll>(L + 2));
pref.assign(n + 1, vector<ll>(L + 1));
vector<Frac> need(n + 1);
for (int i = 1; i <= n; i += 1) {
ll sum = 0;
for (int j = 1; j <= L; j += 1) {
cin >> v[i][j];
sum += v[i][j];
pref[i][j] = pref[i][j - 1] + v[i][j];
}
v[i][L + 1] = 1;
need[i] = {sum, n};
}
vector<pair<int, Frac>> sol;
for (int step = 1; step <= 100; step += 1) {
vector<int> ord(n);
iota(all(ord), 1);
shuffle(all(ord), rng);
shuffle(all(ord), rng);
shuffle(all(ord), rng);
shuffle(all(ord), rng);
shuffle(all(ord), rng);
vector<pair<int, Frac>> cur;
Frac eaten = {0, 1};
int full = 0;
bool bad = 0;
for (auto i : ord) {
Frac split;
if (full == L) {
bad = 1;
break;
}
if (need[i] <= v[i][full + 1].get() * (Frac(full + 1, 1) - eaten)) {
split = eaten + (need[i] / v[i][full + 1].get());
} else {
Frac aux = need[i];
aux = aux - v[i][full + 1].get() * (Frac(full + 1, 1) - eaten);
assert(Frac(0, 1) <= aux);
int low = full + 2, high = L, sol = full + 1;
while (low <= high) {
int m = (low + high) / 2;
if (Frac(pref[i][m] - pref[i][full + 1], 1) <= aux) {
sol = m;
low = m + 1;
} else {
high = m - 1;
}
}
if (sol > L) {
bad = 1;
break;
}
aux = aux - Frac(pref[i][sol] - pref[i][full + 1], 1);
split = Frac(sol, 1) + (aux / v[i][sol + 1].get());
if (!(split <= Frac(L, 1))) {
bad = 1;
break;
}
}
eaten = split;
full = eaten.getIntValue().get();
cur.push_back({i, eaten});
}
if (bad == 0) {
sol = cur;
break;
}
}
for (int i = 0; i < sol.size() - 1; i += 1) {
int who = sol[i].first;
Frac split = sol[i].second;
cout << split.p << " " << split.q << "\n";
}
for (int i = 0; i < sol.size(); i += 1) {
int who = sol[i].first;
Frac split = sol[i].second;
cout << who << " ";
}
cout << "\n";
return 0;
}
Compilation message (stderr)
naan.cpp:363: warning: "ll" redefined
363 | #define ll bigint
|
naan.cpp:7: note: this is the location of the previous definition
7 | #define ll long long
|
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |