Submission #1125242

#TimeUsernameProblemLanguageResultExecution timeMemory
1125242eysbutnoDango Maker (JOI18_dango_maker)C++20
13 / 100
291 ms327680 KiB
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = array<int, 2>; #define all(x) begin(x), end(x) #define sz(x) (int) (x).size() int main() { cin.tie(0) -> sync_with_stdio(0); int n, m; cin >> n >> m; vector<string> grid(n); for (string &i : grid) { cin >> i; } vector vert(n, vector<int>(m, -1)); vector horiz(n, vector<int>(m, -1)); int timer = 0; for (int i = 0; i < n; i++) { for (int j = 0; j + 2 < m; j++) { string res = ""; for (int k = 0; k < 3; k++) { res += grid[i][j + k]; } if (res != "RGW") continue; int id = timer++; for (int k = 0; k < 3; k++) { horiz[i][j + k] = id; } } } for (int i = 0; i + 2 < n; i++) { for (int j = 0; j < m; j++) { string res = ""; for (int k = 0; k < 3; k++) { res += grid[i + k][j]; } if (res != "RGW") continue; int id = timer++; for (int k = 0; k < 3; k++) { vert[i + k][j] = id; } } } vector<vector<int>> adj(timer); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { int a = vert[i][j], b = horiz[i][j]; if (a != -1 && b != -1) { adj[a].push_back(b); adj[b].push_back(a); } } } vector<bool> vis(timer); vector<int> col(timer, -1); const auto most_dangos = [&](int src) -> int { array<int, 2> res = {0, 0}; int cur = 0; const auto dfs = [&](int u, int p, auto &&self) -> void { // if (cur == 0) assert(!vis[u]); vis[u] = true; res[cur] += col[u]; for (int v : adj[u]) { if (v == p) { continue; } col[v] = !col[u]; self(v, u, self); } }; col[src] = 0; dfs(src, -1, dfs); cur = 1; col[src] = 1; dfs(src, -1, dfs); return max(res[0], res[1]); }; int res = 0; for (int i = 0; i < timer; i++) { if (vis[i]) continue; res += most_dangos(i); } cout << res << "\n"; /* for (int t = 0; t < 2; t++) { const auto &arr = (t) ? vert : horiz; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cout << arr[i][j] << " \n"[j == m - 1]; } } } */ } /** * grid of dangos * * choose 3 consecutive dangos (l->r, or t->b) * and string them together * * must be RED, GREEN, WHITE * * ok, first there are O(nm) possible dangos. * * we need to think of the relations between the dangos. * how does adding one dango affect another? * * ok, so adding one dango prevents any dangoes that * go thru its cells to be placed. * * relations between dangos => we have a graph! * * adjacent dangoes that go thru can't work * * => like a bipartite graph * => for each component, we want max bipartite matching * * ok good stuff * * is the graph acyclic? i don't think it is because like, * dangos can only go l->r and u->d, which means you can't go baackwards * or anything funny * * */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...