Submission #112497

# Submission time Handle Problem Language Result Execution time Memory
112497 2019-05-20T09:37:29 Z AngusRitossa Bitaro, who Leaps through Time (JOI19_timeleap) C++14
34 / 100
3000 ms 62788 KB
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
	#define D(x...) printf(x)
#else
	#define D(x...)
#endif
typedef long long ll;
typedef pair<pair<int, int>, pair<int, int> > piiii;
int n, q;
int l[300010], r[300010];
piiii rangetree[300010*4];
pair<int, int> maxmin(pair<int, int> a, pair<int, int> b)
{
	if (a.first == b.first) return min(a, b);
	else return max(a, b);
}
void update(int node, pair<int, int> val, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend)
	{
		rangetree[curr] = { { val.first, node }, { val.second, node } };
		return;
	}
	int mid = (cstart+cend)/2;
	if (node <= mid) update(node, val, 2*curr, cstart, mid);
	else update(node, val, 2*curr+1, mid+1, cend);
	rangetree[curr].first = maxmin(rangetree[2*curr].first, rangetree[2*curr+1].first);
	rangetree[curr].second = min(rangetree[2*curr].second, rangetree[2*curr+1].second);
}
piiii save[300010*4];
int upto, seen[300010*4];
piiii query(int s, int e, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (s <= cstart && cend <= e) return rangetree[curr];
	if (seen[curr] == upto) return save[curr];
	seen[curr] = upto;
	int mid = (cstart+cend)/2;
	if (e <= mid) return save[curr] = query(s, e, 2*curr, cstart, mid);
	else if (s > mid) return save[curr] = query(s, e, 2*curr+1, mid+1, cend);
	else 
	{
		auto a = query(s, e, 2*curr, cstart, mid);
		auto b = query(s, e, 2*curr+1, mid+1, cend);
		return save[curr] = { maxmin(a.first, b.first), min(a.second, b.second) };
	}
}
int firstbefore(int node, int hei, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node-1 <= mid) return firstbefore(node, hei, 2*curr, cstart, mid);
	auto q = query(mid+1, node-1, 2*curr+1, mid+1, cend);
	if (q.first.first > hei || q.second.first < hei) return firstbefore(node, hei, 2*curr+1, mid+1, cend);
	else return firstbefore(node, hei, 2*curr, cstart, mid);
}
int firstafter(int node, int hei, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node >= mid) return firstafter(node, hei, 2*curr+1, mid+1, cend);
	auto q = query(node+1, mid, 2*curr, cstart, mid);
	if (q.first.first > hei || q.second.first < hei) return firstafter(node, hei, 2*curr, cstart, mid);
	else return firstafter(node, hei, 2*curr+1, mid+1, cend);
}
int firstbefore0(int node, int hei, bool checkl, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node-1 <= mid) return firstbefore0(node, hei, checkl, 2*curr, cstart, mid);
	auto q = query(mid+1, node-1, 2*curr+1, mid+1, cend);
	if (checkl) 
	{
		if (q.first.first >= hei || q.second.first < hei) return firstbefore0(node, hei, checkl, 2*curr+1, mid+1, cend);
	}
	else 
	{
		if (q.first.first > hei || q.second.first <= hei) return firstbefore0(node, hei, checkl, 2*curr+1, mid+1, cend);
	}
	return firstbefore0(node, hei, checkl, 2*curr, cstart, mid);
}
ll rt2[300010*4];
void upd2(int node, int val, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) 
	{
		rt2[curr] = val;
		return;
	}
	int mid = (cstart+cend)/2;
	if (node <= mid) upd2(node, val, 2*curr, cstart, mid);
	else upd2(node, val, 2*curr+1, mid+1, cend);
	rt2[curr] = rt2[2*curr]+rt2[2*curr+1];
}
ll qu2(int s, int e, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (s <= cstart && cend <= e) return rt2[curr];
	int mid = (cstart+cend)/2;
	if (e <= mid) return qu2(s, e, 2*curr, cstart, mid);
	else if (s > mid) return qu2(s, e, 2*curr+1, mid+1, cend);
	else return qu2(s, e, 2*curr, cstart, mid)+qu2(s, e, 2*curr+1, mid+1, cend);
}
pair<int, int> firstonleft(int a, int hei)
{
	upto++;
	int s = firstbefore(a, hei);
	int type = l[s] > hei; // if 1 above, if 0 below
	return { s, type };
}
bool firstonleftactually0(int a, int hei, bool checkl)
{
	upto++;
	int s = firstbefore0(a, hei, checkl);
	if (checkl) return l[s] == hei;
	else return r[s] == hei;
}
pair<int, int> firstonright(int a, int hei)
{
	upto++;
	int s = firstafter(a, hei);
	int type = l[s] > hei; // if 1 above, if 0 below
	return { s, type };
}
set<pair<int, int> > mnmx;
int was[300010];
void checkforlocalstuff(int a)
{
	// Check if l is local max
	if (!firstonleft(a, l[a]).second && !firstonright(a, l[a]).second) 
	{
		if (!firstonleftactually0(a, l[a], 1))
		{
			D("local max %d\n", a);
			if (was[a] != 1) mnmx.insert({a, 0}), upd2(a, l[a]);
			if (was[a] != 1 && was[a]) mnmx.erase({a, 1});
			was[a] = 1;
		}
		else
		{
			if (was[a] == 1 || was[a] == -1) mnmx.erase({a, 0});
			if (was[a] == 2 || was[a] == -1) mnmx.erase({a, 1});
			if (was[a]) upd2(a, 0);
			was[a] = 0;
		}
	}
	else
	{
		if (was[a] == 1 || was[a] == -1) mnmx.erase({a, 0});
		if (firstonleft(a, r[a]).second && firstonright(a, r[a]).second && !firstonleftactually0(a, r[a], 0)) 
		{
			D("local min %d\n", a);
			if (was[a] != 2) mnmx.insert({a, 1}), upd2(a, -r[a]);
			was[a] = 2;
		}
		else
		{
			if (was[a] == 2 || was[a] == -1) mnmx.erase({a, 1});
			if (was[a]) upd2(a, 0);
			was[a] = 0;
		}

	}
}
int A[300010], B[300010], C[300010], D[300010], T[300010], L[300010], R[300010];
ll ANS[300010];
void dothing(bool reverse)
{
	mnmx.clear();
	fill_n(rt2, 300010*4, 0ll);
	fill_n(was, 300010, 0);
	for (int i = 1; i < n; i++) 
	{
		l[i] = L[i], r[i] = R[i];
		if (reverse) l[i] = L[n-i], r[i] = R[n-i];
		l[i]-=i;
		r[i]-=i+1;
		D("%lld %lld\n", l[i], r[i]);
		update(i, { l[i], r[i] });
	}
	update(0, { 2e9, -2e9 });
	update(n, { 2e9, -2e9 });
	// Find local max and mins
	for (int i = 1; i < n; i++)
	{
		checkforlocalstuff(i);
	}
	for (int i = 0; i < q; i++)
	{
		if (T[i] == 1)
		{
			int a = A[i], x = B[i], y = C[i];
			if (reverse) a = n-a;
			was[a] = -1;
			l[a] = x-a, r[a] = y-a-1;
			update(a, { l[a], r[a] });
			// update me
			checkforlocalstuff(a);
			// check thing before me
			if (a != 1)
			{
				auto it = mnmx.lower_bound({a, 0});
				int thing = 1;
				if (it != mnmx.begin()) thing = (--it)->first;
				upto++;
				auto q = query(thing, a-1);
				checkforlocalstuff(q.first.second);
				checkforlocalstuff(q.second.second);
			}
			if (a != n-1)
			{
				auto it = mnmx.lower_bound({a, 2});
				int thing = n-1;
				if (it != mnmx.end()) thing = it->first;
				upto++;
				auto q = query(a+1, thing);
				checkforlocalstuff(q.first.second);
				checkforlocalstuff(q.second.second);
			}
			continue;
		}
		int a = A[i], b = B[i], c = C[i], d = D[i];
		if (a > c && !reverse) continue;
		if (reverse)
		{
			if (a <= c) continue;
			a = n-a+1, c = n-c+1;
		} 
		b-=a, d-=c;
		if (a == c)
		{
			ANS[i] = max(0, b-d);
			continue;
		}
		ll am = 0;
		if (b < l[a]) b = l[a];
		if (b > r[a]) am += b-r[a], b = r[a];
		D("b %lld d %lld am %lld\n", b, d, am);
		// find first occuring secondhalf local thingo 
		auto it = mnmx.lower_bound({a, -1});
		if (it == mnmx.end() || it->first >= c)
		{
			// There are none in between
			upto++;
			auto q = query(a, c-1);
			auto mn = q.second; // mn top
			auto mx = q.first; // mx bot
			int currloc = b;
			ll ans = am;
			if (mn.second < mx.second)
			{
				// go down to mn if its below
				if (mn.first < currloc)
				{
					ans += currloc-mn.first;
					currloc = mn.first;
				}
				// go up to mx if its above
				currloc = max(currloc, mx.first);
				// go down to end
				ans += max(0, currloc-d);
			}
			else
			{
				// go up to mx if its above
				currloc = max(currloc, mx.first);
				// go down to mn if its below
				if (mn.first < currloc)
				{
					ans += currloc-mn.first;
					currloc = mn.first;
				}
				// go down to end
				ans += max(0, currloc-d);
			}
			D("none between: ");
			ANS[i] = ans;
		}
		else
		{
			auto it2 = prev(mnmx.lower_bound({ c, -1 }));
			ll ans = am;
			if (it == it2)
			{
				// one in between
				if (it->second) // Local min
				{
					upto++;
					int mxbefore = query(a, it->first).first.first;
					mxbefore = max(mxbefore, b);
					upto++;
					int mxafter = query(it->first, c-1).first.first;
					mxafter = max(mxafter, d);
					// move down to the local mn if needed
					int pos = mxbefore;
					int lmnheight = r[it->first];
					if (lmnheight < pos) ans += pos-lmnheight, pos = lmnheight;
					// move down/up to mx after
					ans += max(0, pos-mxafter);
					pos = mxafter;
					// move up/down to end
					ans += max(0, pos-d);
				}
				else // Local max
				{
					upto++;
					int mnbefore = query(a, it->first).second.first;
					mnbefore = min(mnbefore, b);
					upto++;
					int mnafter = query(it->first, c-1).second.first;
					mnafter = min(mnafter, d);
					// move down to first thing
					int pos = b;
					ans += pos-mnbefore;
					pos = mnbefore;
					// go up to local max if needed
					pos = max(pos, l[it->first]);
					ans += max(0, pos-mnafter);					
				}
				D("one between: ");
				ANS[i] = ans;
			}
			else
			{
				// two in between
				if (it->second) // first is local min
				{
					upto++;
					int mxbefore = query(a, it->first).first.first;
					mxbefore = max(mxbefore, b);
					mxbefore = max(mxbefore, r[it->first]);
					ans += mxbefore;
				}
				else // first is local max
				{
					upto++;
					int mnbefore = query(a, it->first).second.first;
					mnbefore = min(mnbefore, b);
					mnbefore = min(mnbefore, l[it->first]);
					ans += b-mnbefore;
				}
				if (it2->second) // last is local min
				{
					upto++;
					int mxbefore = query(it2->first, c-1).first.first;
					mxbefore = max(mxbefore, d);
					mxbefore = max(mxbefore, r[it2->first]);
					ans += mxbefore-d;
				}
				else // last is local max
				{
					upto++;
					int mnbefore = query(it2->first, c-1).second.first;
					mnbefore = min(mnbefore, d);
					mnbefore = min(mnbefore, l[it2->first]);
					ans -= mnbefore;
				}
				ans += qu2(a, c-1);
				D(">1 between: ");
				ANS[i] = ans;
			}
		}
	}
}
int main()
{
	scanf("%d%d", &n, &q);
	for (int i = 1; i < n; i++) scanf("%d%d", &L[i], &R[i]);
	for (int i = 0; i < q; i++)
	{
		scanf("%d", &T[i]);
		if (T[i] == 1) scanf("%d%d%d", &A[i], &B[i], &C[i]);
		else scanf("%d%d%d%d", &A[i], &B[i], &C[i], &D[i]);
	}
	dothing(0);
	dothing(1);
	for (int i = 0; i < q; i++)
	{
		if (T[i] == 2) printf("%lld\n", ANS[i]);
	}
}

Compilation message

timeleap.cpp: In function 'int main()':
timeleap.cpp:366:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d%d", &n, &q);
  ~~~~~^~~~~~~~~~~~~~~~
timeleap.cpp:367:35: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  for (int i = 1; i < n; i++) scanf("%d%d", &L[i], &R[i]);
                              ~~~~~^~~~~~~~~~~~~~~~~~~~~~
timeleap.cpp:370:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%d", &T[i]);
   ~~~~~^~~~~~~~~~~~~
timeleap.cpp:371:23: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   if (T[i] == 1) scanf("%d%d%d", &A[i], &B[i], &C[i]);
                  ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
timeleap.cpp:372:13: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   else scanf("%d%d%d%d", &A[i], &B[i], &C[i], &D[i]);
        ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 11 ms 11136 KB Output is correct
2 Correct 11 ms 11136 KB Output is correct
3 Correct 11 ms 11136 KB Output is correct
4 Correct 11 ms 11136 KB Output is correct
5 Correct 11 ms 11136 KB Output is correct
6 Correct 11 ms 11136 KB Output is correct
7 Correct 11 ms 11136 KB Output is correct
8 Correct 11 ms 11136 KB Output is correct
9 Correct 10 ms 11136 KB Output is correct
10 Correct 11 ms 11136 KB Output is correct
11 Correct 22 ms 11264 KB Output is correct
12 Correct 20 ms 11264 KB Output is correct
13 Correct 19 ms 11264 KB Output is correct
14 Correct 21 ms 11264 KB Output is correct
15 Correct 20 ms 11264 KB Output is correct
16 Correct 20 ms 11292 KB Output is correct
17 Correct 20 ms 11264 KB Output is correct
18 Correct 20 ms 11392 KB Output is correct
19 Correct 19 ms 11264 KB Output is correct
20 Correct 20 ms 11264 KB Output is correct
21 Correct 21 ms 11392 KB Output is correct
22 Correct 20 ms 11264 KB Output is correct
23 Correct 20 ms 11264 KB Output is correct
24 Correct 24 ms 11264 KB Output is correct
25 Correct 21 ms 11264 KB Output is correct
26 Correct 18 ms 11264 KB Output is correct
27 Correct 22 ms 11264 KB Output is correct
28 Correct 21 ms 11264 KB Output is correct
29 Correct 20 ms 11264 KB Output is correct
30 Correct 21 ms 11264 KB Output is correct
31 Correct 20 ms 11264 KB Output is correct
32 Correct 20 ms 11240 KB Output is correct
33 Correct 20 ms 11264 KB Output is correct
34 Correct 19 ms 11264 KB Output is correct
35 Correct 20 ms 11264 KB Output is correct
36 Correct 20 ms 11264 KB Output is correct
37 Correct 19 ms 11264 KB Output is correct
38 Correct 19 ms 11264 KB Output is correct
39 Correct 20 ms 11264 KB Output is correct
40 Correct 20 ms 11264 KB Output is correct
41 Correct 10 ms 11008 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2058 ms 56724 KB Output is correct
2 Correct 2159 ms 54728 KB Output is correct
3 Correct 2013 ms 55208 KB Output is correct
4 Correct 1981 ms 54136 KB Output is correct
5 Correct 2045 ms 56516 KB Output is correct
6 Correct 2016 ms 55948 KB Output is correct
7 Correct 2311 ms 61136 KB Output is correct
8 Correct 2360 ms 62788 KB Output is correct
9 Correct 2156 ms 57876 KB Output is correct
10 Correct 2055 ms 57208 KB Output is correct
11 Correct 2097 ms 56768 KB Output is correct
12 Correct 2152 ms 59128 KB Output is correct
13 Correct 2138 ms 59856 KB Output is correct
14 Correct 10 ms 11008 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 11136 KB Output is correct
2 Correct 11 ms 11136 KB Output is correct
3 Correct 11 ms 11136 KB Output is correct
4 Correct 11 ms 11136 KB Output is correct
5 Correct 11 ms 11136 KB Output is correct
6 Correct 11 ms 11136 KB Output is correct
7 Correct 11 ms 11136 KB Output is correct
8 Correct 11 ms 11136 KB Output is correct
9 Correct 10 ms 11136 KB Output is correct
10 Correct 11 ms 11136 KB Output is correct
11 Correct 22 ms 11264 KB Output is correct
12 Correct 20 ms 11264 KB Output is correct
13 Correct 19 ms 11264 KB Output is correct
14 Correct 21 ms 11264 KB Output is correct
15 Correct 20 ms 11264 KB Output is correct
16 Correct 20 ms 11292 KB Output is correct
17 Correct 20 ms 11264 KB Output is correct
18 Correct 20 ms 11392 KB Output is correct
19 Correct 19 ms 11264 KB Output is correct
20 Correct 20 ms 11264 KB Output is correct
21 Correct 21 ms 11392 KB Output is correct
22 Correct 20 ms 11264 KB Output is correct
23 Correct 20 ms 11264 KB Output is correct
24 Correct 24 ms 11264 KB Output is correct
25 Correct 21 ms 11264 KB Output is correct
26 Correct 18 ms 11264 KB Output is correct
27 Correct 22 ms 11264 KB Output is correct
28 Correct 21 ms 11264 KB Output is correct
29 Correct 20 ms 11264 KB Output is correct
30 Correct 21 ms 11264 KB Output is correct
31 Correct 20 ms 11264 KB Output is correct
32 Correct 20 ms 11240 KB Output is correct
33 Correct 20 ms 11264 KB Output is correct
34 Correct 19 ms 11264 KB Output is correct
35 Correct 20 ms 11264 KB Output is correct
36 Correct 20 ms 11264 KB Output is correct
37 Correct 19 ms 11264 KB Output is correct
38 Correct 19 ms 11264 KB Output is correct
39 Correct 20 ms 11264 KB Output is correct
40 Correct 20 ms 11264 KB Output is correct
41 Correct 10 ms 11008 KB Output is correct
42 Correct 2058 ms 56724 KB Output is correct
43 Correct 2159 ms 54728 KB Output is correct
44 Correct 2013 ms 55208 KB Output is correct
45 Correct 1981 ms 54136 KB Output is correct
46 Correct 2045 ms 56516 KB Output is correct
47 Correct 2016 ms 55948 KB Output is correct
48 Correct 2311 ms 61136 KB Output is correct
49 Correct 2360 ms 62788 KB Output is correct
50 Correct 2156 ms 57876 KB Output is correct
51 Correct 2055 ms 57208 KB Output is correct
52 Correct 2097 ms 56768 KB Output is correct
53 Correct 2152 ms 59128 KB Output is correct
54 Correct 2138 ms 59856 KB Output is correct
55 Correct 10 ms 11008 KB Output is correct
56 Execution timed out 3011 ms 52160 KB Time limit exceeded
57 Halted 0 ms 0 KB -