Submission #112445

# Submission time Handle Problem Language Result Execution time Memory
112445 2019-05-19T23:10:08 Z AngusRitossa Bitaro, who Leaps through Time (JOI19_timeleap) C++14
4 / 100
3000 ms 70008 KB
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
	#define D(x...) printf(x)
#else
	#define D(x...)
#endif
typedef long long ll;
typedef pair<pair<int, int>, pair<int, int> > piiii;
int n, q;
ll l[300010], r[300010];
piiii rangetree[300010*4];
pair<int, int> maxmin(pair<int, int> a, pair<int, int> b)
{
	if (a.first == b.first) return min(a, b);
	else return max(a, b);
}
void update(int node, pair<int, int> val, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend)
	{
		rangetree[curr] = { { val.first, node }, { val.second, node } };
		return;
	}
	int mid = (cstart+cend)/2;
	if (node <= mid) update(node, val, 2*curr, cstart, mid);
	else update(node, val, 2*curr+1, mid+1, cend);
	rangetree[curr].first = maxmin(rangetree[2*curr].first, rangetree[2*curr+1].first);
	rangetree[curr].second = min(rangetree[2*curr].second, rangetree[2*curr+1].second);
}
piiii query(int s, int e, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (s <= cstart && cend <= e) return rangetree[curr];
	int mid = (cstart+cend)/2;
	if (e <= mid) return query(s, e, 2*curr, cstart, mid);
	else if (s > mid) return query(s, e, 2*curr+1, mid+1, cend);
	else 
	{
		auto a = query(s, e, 2*curr, cstart, mid);
		auto b = query(s, e, 2*curr+1, mid+1, cend);
		return { maxmin(a.first, b.first), min(a.second, b.second) };
	}
}
int firstbefore(int node, int hei, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node-1 <= mid) return firstbefore(node, hei, 2*curr, cstart, mid);
	auto q = query(mid+1, node-1, 2*curr+1, mid+1, cend);
	if (q.first.first > hei || q.second.first < hei) return firstbefore(node, hei, 2*curr+1, mid+1, cend);
	else return firstbefore(node, hei, 2*curr, cstart, mid);
}
int firstafter(int node, int hei, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node >= mid) return firstafter(node, hei, 2*curr+1, mid+1, cend);
	auto q = query(node+1, mid, 2*curr, cstart, mid);
	if (q.first.first > hei || q.second.first < hei) return firstafter(node, hei, 2*curr, cstart, mid);
	else return firstafter(node, hei, 2*curr+1, mid+1, cend);
}
int firstbefore0(int node, int hei, bool checkl, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) return cstart;
	int mid = (cstart+cend)/2;
	if (node-1 <= mid) return firstbefore0(node, hei, checkl, 2*curr, cstart, mid);
	auto q = query(mid+1, node-1, 2*curr+1, mid+1, cend);
	if (checkl) 
	{
		if (q.first.first >= hei || q.second.first < hei) return firstbefore0(node, hei, checkl, 2*curr+1, mid+1, cend);
	}
	else 
	{
		if (q.first.first > hei || q.second.first <= hei) return firstbefore0(node, hei, checkl, 2*curr+1, mid+1, cend);
	}
	return firstbefore0(node, hei, checkl, 2*curr, cstart, mid);
}
ll rt2[300010*4];
void upd2(int node, ll val, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (cstart == cend) 
	{
		rt2[curr] = val;
		return;
	}
	int mid = (cstart+cend)/2;
	if (node <= mid) upd2(node, val, 2*curr, cstart, mid);
	else upd2(node, val, 2*curr+1, mid+1, cend);
	rt2[curr] = rt2[2*curr]+rt2[2*curr+1];
}
ll qu2(int s, int e, int curr = 1, int cstart = 0, int cend = 300000)
{
	if (s <= cstart && cend <= e) return rt2[curr];
	int mid = (cstart+cend)/2;
	if (e <= mid) return qu2(s, e, 2*curr, cstart, mid);
	else if (s > mid) return qu2(s, e, 2*curr+1, mid+1, cend);
	else return qu2(s, e, 2*curr, cstart, mid)+qu2(s, e, 2*curr+1, mid+1, cend);
}
pair<int, int> firstonleft(int a, int hei)
{
	int s = firstbefore(a, hei);
	int type = l[s] > hei; // if 1 above, if 0 below
	return { s, type };
}
bool firstonleftactually0(int a, int hei, bool checkl)
{
	int s = firstbefore0(a, hei, checkl);
	if (checkl) return l[s] == hei;
	else return r[s] == hei;
}
pair<int, int> firstonright(int a, int hei)
{
	int s = firstafter(a, hei);
	int type = l[s] > hei; // if 1 above, if 0 below
	return { s, type };
}
set<pair<int, int> > mnmx;
void checkforlocalstuff(int a)
{
	// Check if l is local max
	upd2(a, 0);
	auto i = firstonleft(a, l[a]);
	auto j = firstonright(a, l[a]);
	if (!i.second && !j.second && !firstonleftactually0(a, l[a], 1)) 
	{
		D("local max %d\n", a);
		mnmx.insert({a, 0});
		upd2(a, l[a]);
	}
	else
	{
		mnmx.erase({a, 0});
	}
	// Check if r is local min
	i = firstonleft(a, r[a]);
	j = firstonright(a, r[a]);
	if (i.second && j.second && !firstonleftactually0(a, r[a], 0)) 
	{
		D("local min %d\n", a);
		mnmx.insert({a, 1});
		upd2(a, -r[a]);
	}
	else
	{
		mnmx.erase({a, 1});
	}
}
ll A[300010], B[300010], C[300010], D[300010], T[300010], L[300010], R[300010], ANS[300010];
void dothing(bool reverse)
{
	mnmx.clear();
	for (int i = 1; i < n; i++) 
	{
		l[i] = L[i], r[i] = R[i];
		if (reverse) l[i] = L[n-i], r[i] = R[n-i];
		l[i]-=i;
		r[i]-=i+1;
		D("%lld %lld\n", l[i], r[i]);
		update(i, { l[i], r[i] });
	}
	update(0, { 2e9, -2e9 });
	update(n, { 2e9, -2e9 });
	// Find local max and mins
	for (int i = 1; i < n; i++)
	{
		checkforlocalstuff(i);
	}
	for (int i = 0; i < q; i++)
	{
		ll t, a, b, c, d;
		t = T[i];
		if (t == 1)
		{
			ll a = A[i], x = B[i], y = C[i];
			if (reverse) a = n-a;
			l[a] = x-a, r[a] = y-a-1;
			update(a, { l[a], r[a] });
			// update me
			checkforlocalstuff(a);
			// check thing before me
			auto it = mnmx.lower_bound({a, 0});
			if (it != mnmx.begin())
			{
				--it;
				int thing = it->first;
				checkforlocalstuff(thing);
			}
			{
				it = mnmx.lower_bound({a, 0});
				int thing = 1;
				if (it != mnmx.begin()) thing = prev(it)->first+1;
				auto q = query(thing, a);
				checkforlocalstuff(q.first.second);
				checkforlocalstuff(q.second.second);
			}
			it = mnmx.lower_bound({a, 2});
			if (it != mnmx.end())
			{
				int thing = it->first;
				checkforlocalstuff(thing);
			}
			{
				it = mnmx.lower_bound({a, 2});
				int thing = n-1;
				if (it != mnmx.end()) thing = it->first-1;
				auto q = query(a, thing);
				checkforlocalstuff(q.first.second);
				checkforlocalstuff(q.second.second);
			}
			continue;
		}
		a = A[i], b = B[i], c = C[i], d = D[i];
		if (a > c && !reverse) continue;
		if (reverse)
		{
			if (a <= c) continue;
			a = n-a+1, c = n-c+1;
		} 
		b-=a, d-=c;
		if (a == c)
		{
			ANS[i] = max(0ll, b-d);
			continue;
		}
		ll am = 0;
		if (b < l[a]) b = l[a];
		if (b > r[a]) am += b-r[a], b = r[a];
		D("b %lld d %lld am %lld\n", b, d, am);
		// find first occuring secondhalf local thingo 
		auto it = mnmx.lower_bound({a, -1});
		if (it == mnmx.end() || it->first >= c)
		{
			// There are none in between
			auto q = query(a, c-1);
			auto mn = q.second; // mn top
			auto mx = q.first; // mx bot
			ll currloc = b;
			ll ans = am;
			if (mn.second < mx.second)
			{
				// go down to mn if its below
				if (mn.first < currloc)
				{
					ans += currloc-mn.first;
					currloc = mn.first;
				}
				// go up to mx if its above
				currloc = max(currloc, (ll)mx.first);
				// go down to end
				ans += max(0ll, currloc-d);
			}
			else
			{
				// go up to mx if its above
				currloc = max(currloc, (ll)mx.first);
				// go down to mn if its below
				if (mn.first < currloc)
				{
					ans += currloc-mn.first;
					currloc = mn.first;
				}
				// go down to end
				ans += max(0ll, currloc-d);
			}
			D("none between: ");
			ANS[i] = ans;
		}
		else
		{
			auto it2 = prev(mnmx.lower_bound({ c, -1 }));
			ll ans = am;
			if (it == it2)
			{
				// one in between
				if (it->second) // Local min
				{
					ll mxbefore = query(a, it->first).first.first;
					mxbefore = max(mxbefore, b);
					ll mxafter = query(it->first, c-1).first.first;
					mxafter = max(mxafter, d);
					// move down to the local mn if needed
					ll pos = mxbefore;
					ll lmnheight = r[it->first];
					if (lmnheight < pos) ans += pos-lmnheight, pos = lmnheight;
					// move down/up to mx after
					ans += max(0ll, pos-mxafter);
					pos = mxafter;
					// move up/down to end
					ans += max(0ll, pos-d);
				}
				else // Local max
				{
					ll mnbefore = query(a, it->first).second.first;
					mnbefore = min(mnbefore, b);
					ll mnafter = query(it->first, c-1).second.first;
					mnafter = min(mnafter, d);
					// move down to first thing
					ll pos = b;
					ans += pos-mnbefore;
					pos = mnbefore;
					// go up to local max if needed
					pos = max(pos, l[it->first]);
					ans += max(0ll, pos-mnafter);					
				}
				D("one between: ");
				ANS[i] = ans;
			}
			else
			{
				// two in between
				if (it->second) // first is local min
				{
					ll mxbefore = query(a, it->first).first.first;
					mxbefore = max(mxbefore, b);
					mxbefore = max(mxbefore, r[it->first]);
					ans += mxbefore;
				}
				else // first is local max
				{
					ll mnbefore = query(a, it->first).second.first;
					mnbefore = min(mnbefore, b);
					mnbefore = min(mnbefore, l[it->first]);
					ans += b-mnbefore;
				}
				if (it2->second) // last is local min
				{
					ll mxbefore = query(it2->first, c-1).first.first;
					mxbefore = max(mxbefore, d);
					mxbefore = max(mxbefore, r[it2->first]);
					ans += mxbefore-d;
				}
				else // last is local max
				{
					ll mnbefore = query(it2->first, c-1).second.first;
					mnbefore = min(mnbefore, d);
					mnbefore = min(mnbefore, l[it2->first]);
					ans -= mnbefore;
				}
				ans += qu2(a, c-1);
				D(">1 between: ");
				ANS[i] = ans;
			}
		}
	}
}
int main()
{
	scanf("%d%d", &n, &q);
	for (int i = 1; i < n; i++) scanf("%lld%lld", &L[i], &R[i]);
	for (int i = 0; i < q; i++)
	{
		scanf("%lld", &T[i]);
		if (T[i] == 1) scanf("%lld%lld%lld", &A[i], &B[i], &C[i]);
		else scanf("%lld%lld%lld%lld", &A[i], &B[i], &C[i], &D[i]);
	}
	dothing(0);
	dothing(1);
	for (int i = 0; i < q; i++)
	{
		if (T[i] == 2) printf("%lld\n", ANS[i]);
	}
}

Compilation message

timeleap.cpp: In function 'int main()':
timeleap.cpp:348:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d%d", &n, &q);
  ~~~~~^~~~~~~~~~~~~~~~
timeleap.cpp:349:35: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  for (int i = 1; i < n; i++) scanf("%lld%lld", &L[i], &R[i]);
                              ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
timeleap.cpp:352:8: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%lld", &T[i]);
   ~~~~~^~~~~~~~~~~~~~~
timeleap.cpp:353:23: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   if (T[i] == 1) scanf("%lld%lld%lld", &A[i], &B[i], &C[i]);
                  ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
timeleap.cpp:354:13: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   else scanf("%lld%lld%lld%lld", &A[i], &B[i], &C[i], &D[i]);
        ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 2 ms 512 KB Output is correct
3 Correct 3 ms 512 KB Output is correct
4 Correct 2 ms 512 KB Output is correct
5 Correct 3 ms 512 KB Output is correct
6 Correct 3 ms 512 KB Output is correct
7 Correct 2 ms 512 KB Output is correct
8 Correct 3 ms 512 KB Output is correct
9 Correct 3 ms 512 KB Output is correct
10 Correct 4 ms 512 KB Output is correct
11 Correct 32 ms 768 KB Output is correct
12 Correct 34 ms 768 KB Output is correct
13 Correct 33 ms 768 KB Output is correct
14 Correct 34 ms 760 KB Output is correct
15 Correct 34 ms 768 KB Output is correct
16 Correct 33 ms 768 KB Output is correct
17 Correct 34 ms 772 KB Output is correct
18 Correct 32 ms 768 KB Output is correct
19 Correct 31 ms 760 KB Output is correct
20 Correct 32 ms 768 KB Output is correct
21 Correct 32 ms 784 KB Output is correct
22 Correct 31 ms 768 KB Output is correct
23 Correct 30 ms 768 KB Output is correct
24 Correct 32 ms 768 KB Output is correct
25 Correct 32 ms 768 KB Output is correct
26 Correct 31 ms 896 KB Output is correct
27 Correct 33 ms 768 KB Output is correct
28 Correct 32 ms 784 KB Output is correct
29 Correct 80 ms 816 KB Output is correct
30 Correct 32 ms 768 KB Output is correct
31 Correct 33 ms 768 KB Output is correct
32 Correct 33 ms 768 KB Output is correct
33 Correct 32 ms 768 KB Output is correct
34 Correct 32 ms 768 KB Output is correct
35 Correct 31 ms 768 KB Output is correct
36 Correct 33 ms 760 KB Output is correct
37 Correct 33 ms 760 KB Output is correct
38 Correct 32 ms 760 KB Output is correct
39 Correct 32 ms 768 KB Output is correct
40 Correct 31 ms 768 KB Output is correct
41 Correct 3 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2969 ms 54248 KB Output is correct
2 Correct 2872 ms 67680 KB Output is correct
3 Correct 2989 ms 68112 KB Output is correct
4 Correct 2848 ms 66808 KB Output is correct
5 Correct 2943 ms 70008 KB Output is correct
6 Correct 2868 ms 69268 KB Output is correct
7 Execution timed out 3054 ms 69920 KB Time limit exceeded
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 2 ms 512 KB Output is correct
3 Correct 3 ms 512 KB Output is correct
4 Correct 2 ms 512 KB Output is correct
5 Correct 3 ms 512 KB Output is correct
6 Correct 3 ms 512 KB Output is correct
7 Correct 2 ms 512 KB Output is correct
8 Correct 3 ms 512 KB Output is correct
9 Correct 3 ms 512 KB Output is correct
10 Correct 4 ms 512 KB Output is correct
11 Correct 32 ms 768 KB Output is correct
12 Correct 34 ms 768 KB Output is correct
13 Correct 33 ms 768 KB Output is correct
14 Correct 34 ms 760 KB Output is correct
15 Correct 34 ms 768 KB Output is correct
16 Correct 33 ms 768 KB Output is correct
17 Correct 34 ms 772 KB Output is correct
18 Correct 32 ms 768 KB Output is correct
19 Correct 31 ms 760 KB Output is correct
20 Correct 32 ms 768 KB Output is correct
21 Correct 32 ms 784 KB Output is correct
22 Correct 31 ms 768 KB Output is correct
23 Correct 30 ms 768 KB Output is correct
24 Correct 32 ms 768 KB Output is correct
25 Correct 32 ms 768 KB Output is correct
26 Correct 31 ms 896 KB Output is correct
27 Correct 33 ms 768 KB Output is correct
28 Correct 32 ms 784 KB Output is correct
29 Correct 80 ms 816 KB Output is correct
30 Correct 32 ms 768 KB Output is correct
31 Correct 33 ms 768 KB Output is correct
32 Correct 33 ms 768 KB Output is correct
33 Correct 32 ms 768 KB Output is correct
34 Correct 32 ms 768 KB Output is correct
35 Correct 31 ms 768 KB Output is correct
36 Correct 33 ms 760 KB Output is correct
37 Correct 33 ms 760 KB Output is correct
38 Correct 32 ms 760 KB Output is correct
39 Correct 32 ms 768 KB Output is correct
40 Correct 31 ms 768 KB Output is correct
41 Correct 3 ms 512 KB Output is correct
42 Correct 2969 ms 54248 KB Output is correct
43 Correct 2872 ms 67680 KB Output is correct
44 Correct 2989 ms 68112 KB Output is correct
45 Correct 2848 ms 66808 KB Output is correct
46 Correct 2943 ms 70008 KB Output is correct
47 Correct 2868 ms 69268 KB Output is correct
48 Execution timed out 3054 ms 69920 KB Time limit exceeded
49 Halted 0 ms 0 KB -