Submission #111503

# Submission time Handle Problem Language Result Execution time Memory
111503 2019-05-15T13:34:14 Z dndhk Palindromic Partitions (CEOI17_palindromic) C++14
60 / 100
6342 ms 18484 KB
#include <bits/stdc++.h>

#define pb push_back
#define all(v) ((v).begin(), (v).end())
#define sortv(v) sort(all(v))
#define sz(v) ((int)(v).size())
#define uniqv(v) (v).erase(unique(all(v)), (v).end())
#define umax(a, b) (a)=max((a), (b))
#define umin(a, b) (a)=min((a), (b))
#define FOR(i,a,b) for(int i = (a); i <= (b); i++)
#define rep(i,n) FOR(i,1,n)
#define rep0(i,n) FOR(i,0,(int)(n)-1)
#define FI first
#define SE second
#define INF 2000000000
#define INFLL 1000000000000000000LL


using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

const ll P1 = 139;
const ll P2 = 127;
const ll DIV = 1000000007;

int T;
string str;

long long str1, str2;
vector<ll> vt1, vt2;

ll pw(ll x, ll y){
	if(y==0)	return 1;
	if(y==1)	return x;
	ll m = pw(x, y/2);
	if(y%2){
		return (((m*m)%DIV) * x) % DIV;
	}else{
		return (m*m) % DIV;
	}
}

bool fnd1(ll x){
	int s = 0, e = vt1.size()-1, m;
	while(s<e){
		m = (s+e)/2;
		if(vt1[m]<x)	s = m+1;
		else 	e = m;
	}
	return (vt1[s]==x);
}

bool fnd2(ll x){
	int s = 0, e = vt2.size()-1, m;
	while(s<e){
		m = (s+e)/2;
		if(vt2[m]<x)	s = m+1;
		else 	e = m;
	}
	return (vt2[s]==x);
}

bool chk(int x1, int x2, int y1, int y2){
	string str1, str2;
	for(int i=x1; i<=x2; i++)	str1.pb(str[i]);
	for(int i=y1; i<=y2; i++)	str2.pb(str[i]);
	return (str1==str2);
}

ll p[30] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113};

int calc(){
	int x, y;
	x = 0; y = str.size()-1;
	int ans = 0;
	while(1){
		if(x>y)	return ans;
		if(x==y)	return ans+1;
		ll num1 = 0, num2 = 0;
		int l = 1;
		while(1){
			if(x+l-1 > y-l+1){
				return ans+1;
			}
			num1 = ((num1 * P1) + p[str[x+l-1] - 'a']) % DIV;
			num2 = ((num2 * P2) + p[str[x+l-1] - 'a']) % DIV;
			if(fnd1((str1 + num1 * pw(P1, x))%DIV) && fnd2((str2 + num2 * pw(P2, x))%DIV)){
				//if(!chk(x, x+l-1, y-l+1, y))	continue;
				str1 = (str1 + num1 * pw(P1, x))%DIV;
				str2 = (str2 + num2 * pw(P2, x))%DIV;
				ans += 2;
				x = x+l; y = y-l;
				break;
			}
			l++;
		}
	}
}

int main(){
	cin>>T;
	while(T--){
		cin>>str;
		str1 = 0, str2 = 0;
		ll num1 = 0, num2 = 0;
		ll m1 = 1, m2 = 1;
		while(!vt1.empty())	vt1.pop_back();
		while(!vt2.empty())	vt2.pop_back();
		for(int i=str.size()-1; i>=0; i--){
			num1 = (num1 + p[str[i]-'a'] * m1) % DIV;
			m1 = (m1 * P1) % DIV;
			vt1.pb(num1);
			num2 = (num2 + p[str[i]-'a'] * m2) % DIV;
			m2 = (m2 * P2) % DIV;
			vt2.pb(num2);
		}
		sort(vt1.begin(), vt1.end());
		sort(vt2.begin(), vt2.end());
		printf("%d\n", calc());
	}
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 384 KB Output is correct
2 Correct 2 ms 256 KB Output is correct
3 Correct 2 ms 256 KB Output is correct
4 Correct 2 ms 256 KB Output is correct
5 Correct 2 ms 256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 384 KB Output is correct
2 Correct 2 ms 256 KB Output is correct
3 Correct 2 ms 256 KB Output is correct
4 Correct 2 ms 256 KB Output is correct
5 Correct 2 ms 256 KB Output is correct
6 Correct 2 ms 256 KB Output is correct
7 Correct 2 ms 384 KB Output is correct
8 Correct 2 ms 256 KB Output is correct
9 Correct 3 ms 384 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 384 KB Output is correct
2 Correct 2 ms 256 KB Output is correct
3 Correct 2 ms 256 KB Output is correct
4 Correct 2 ms 256 KB Output is correct
5 Correct 2 ms 256 KB Output is correct
6 Correct 2 ms 256 KB Output is correct
7 Correct 2 ms 384 KB Output is correct
8 Correct 2 ms 256 KB Output is correct
9 Correct 3 ms 384 KB Output is correct
10 Correct 33 ms 652 KB Output is correct
11 Correct 18 ms 640 KB Output is correct
12 Correct 32 ms 640 KB Output is correct
13 Correct 33 ms 512 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 384 KB Output is correct
2 Correct 2 ms 256 KB Output is correct
3 Correct 2 ms 256 KB Output is correct
4 Correct 2 ms 256 KB Output is correct
5 Correct 2 ms 256 KB Output is correct
6 Correct 2 ms 256 KB Output is correct
7 Correct 2 ms 384 KB Output is correct
8 Correct 2 ms 256 KB Output is correct
9 Correct 3 ms 384 KB Output is correct
10 Correct 33 ms 652 KB Output is correct
11 Correct 18 ms 640 KB Output is correct
12 Correct 32 ms 640 KB Output is correct
13 Correct 33 ms 512 KB Output is correct
14 Incorrect 6342 ms 18484 KB Output isn't correct
15 Halted 0 ms 0 KB -