#include <bits/stdc++.h>
#define all(v) v.begin(), v.end()
#define pb push_back
#define lb lower_bound
#define gibon ios::sync_with_stdio(false); cin.tie(0);
#define fi first
#define se second
#define pii pair<int, int>
#define pll pair<ll, ll>
using namespace std;
typedef long long ll;
typedef array<ll, 3> p3;
typedef array<p3, 5> node;
/*
d[0] : 최단 경로
d[1] : d[0]의 시작 간선이 불가능할 때 최단경로
d[2] : d[0]의 시작 간선과 d[1]의 끝 간선이 불가능할 때 최단경로
d[3] : d[0]의 끝 간선이 불가능할 때 최단경로
d[4] : d[0]의 끝 간선과 d[3]의 시작 간선이 불가능할 때 최단경로
각 경로에 대해서 (길이, 시작 간선, 끝 간선)으로 저장
경로가 없으면 -1
*/
const int mxN=2050;
const int mxQ=100100;
const int MOD=998244353;
const ll INF=1e18; // max = 2MCL = 4e17
p3 mn(p3 a, p3 b){return a[0]<b[0] ? a : b;}
int N, M, Q, L;
node mrg(node a, node b){
node no, res;
for(int i=0;i<5;i++) no[i][0]=-1, res[i][0]=INF;
if(a[0][0]==-1 || b[0][0]==-1) return no;
array <ll, 2> cond;
array <ll, 3> tmp;
for(int i=0;i<5;i++){
if(i==2 && res[1][0]==INF) continue;
if(i==4 && res[3][0]==INF) continue;
cond={-1, -1}, tmp={INF, 0, 0};
// set cond
if(i==1 || i==2) cond[0]=res[0][1];
if(i==2) cond[1]=res[1][2];
if(i==3 || i==4) cond[1]=res[0][2];
if(i==4) cond[0]=res[3][1];
// find shortest path
for(int j=0;j<5;j++) if(a[j][0]!=-1){
if(a[j][1]==cond[0]) continue;
if(abs(b[0][1]-a[j][2])!=M){
if(b[0][2]!=cond[1]) tmp={a[j][0]+b[0][0], a[j][1], b[0][2]};
else if(b[3][0]!=-1 && abs(b[3][1]-a[j][2])!=M) tmp={a[j][0]+b[3][0], a[j][1], b[3][2]};
else if(b[4][0]!=-1) tmp={a[j][0]+b[4][0], a[j][1], b[4][2]};
}
else{
if(b[1][0]!=-1 && b[1][2]!=cond[1]) tmp={a[j][0]+b[1][0], a[j][1], b[1][2]};
else if(b[2][0]!=-1) tmp={a[j][0]+b[2][0], a[j][1], b[2][2]};
}
res[i]=mn(res[i], tmp);
}
if(res[i][0]==INF) res[i][0]=-1;
}
return res;
}
p3 E[mxN];
pii eidx[mxN]; // i번째 edge가 v[a]에서 몇번째인지
vector <p3> v[mxN];
vector <pll> nv[6*mxN];
int A[mxQ];
pii qry[mxQ];
int pdeg[mxN];
ll dist[2*mxN][2*mxN];
pii se[2*mxN][2*mxN];
node D[mxN][mxN];
void input(){
cin >> N >> M >> Q >> L;
for(int i=0;i<M;i++){
int a, b, c;
cin >> a >> b >> c;
eidx[i]=pii(v[a].size(), v[b].size());
v[a].push_back({b, c, i});
v[b].push_back({a, c, i});
E[i][0]=a, E[i][1]=b, E[i][2]=c;
}
for(int i=1;i<=L;i++) cin >> A[i];
for(int i=1;i<=Q;i++) cin >> qry[i].fi >> qry[i].se;
}
void makeGraph(){
// 0~2M-1 : edge
// 2M-1~4M-1 : prefix of edges
// 4M~6M-1 : suffix of edges
for(int i=1;i<=N;i++) pdeg[i]=v[i].size();
for(int i=2;i<=N;i++) pdeg[i]+=pdeg[i-1];
for(int i=1;i<=N;i++){
int sz=v[i].size();
int st=pdeg[i-1];
for(int j=0;j<sz;j++){
// i에서 j번째로 나가는 간선 : s -> e, 비용 x, 간선 번호 idx
// 역간선은 e에서 ipos번째로 나가는 간선
int s=i;
auto [e, x, idx] = v[i][j];
int now = s<e ? idx : idx+M;
int ipos = (s<e ? eidx[idx].se : eidx[idx].fi);
// real edge에서 나가는 간선
if(ipos!=0) nv[now].emplace_back(2*M+pdeg[e-1]+ipos-1, 0);
if(ipos!=v[e].size()-1) nv[now].emplace_back(4*M+pdeg[e-1]+ipos+1, 0);
// prefix 만들기
// 2M+st+j -> 2M+st+j-1
// 2M+st+j -> v[i][j]
if(j!=0) nv[2*M+st+j].emplace_back(2*M+st+j-1, 0);
nv[2*M+st+j].emplace_back(now, x);
// suffix 만들기
// 4M+st+j -> 4M+st+j+1
// 4M+st+j -> v[i][j]
if(j!=sz-1) nv[4*M+st+j].emplace_back(4*M+st+j+1, 0);
nv[4*M+st+j].emplace_back(now, x);
}
}
/*
for(int i=0;i<6*M;i++){
printf("%d: ", i);
for(auto [nxt, x] : nv[i]) printf("(%lld %lld) ", nxt, x);
printf("\n");
}
*/
}
ll d[6*mxN];
void dijk(int st){
for(int i=0;i<6*M;i++) d[i]=INF;
ll pred=0;
priority_queue <pll> pq;
queue <int> que;
que.push(st);
while(pq.size() || que.size()){
int now;
ll x;
if(que.size()){
now=que.front();
x=pred;
que.pop();
}
else{
now=pq.top().se;
x=-pq.top().fi;
pq.pop();
}
if(d[now]!=INF) continue;
d[now]=x;
pred=x;
for(auto [nxt, val] : nv[now]){
if(val==0) que.push(nxt);
else pq.emplace(-x-val, nxt);
}
}
for(int i=0;i<2*M;i++) dist[st][i]=d[i];
}
void solvDist(){
for(int i=0;i<2*M;i++){
dijk(i);
}
/*
for(int i=0;i<2*M;i++){
for(int j=0;j<2*M;j++){
printf("dist[%d][%d]=%lld\n", i, j, dist[i][j]);
}
}
*/
}
void print(node a){
for(int i=0;i<5;i++){
printf("%d: ", i);
for(int j=0;j<3;j++){
printf("%lld ", a[i][j]);
}
printf("\n");
}
}
void makeD(){
for(int z=0;z<5;z++){
for(int i=1;i<=N;i++) for(int j=1;j<=N;j++){
if(i==j) continue;
D[i][j][z][0]=INF;
for(auto [e1, x1, idx1] : v[i]) for(auto [s2, x2, idx2] : v[j]){
int s1=i, e2=j;
int i1=(s1<e1 ? idx1 : idx1+M), i2=(s2<e2 ? idx2 : idx2+M);
bool ok=true;
if(1<=z && z<=2 && D[i][j][0][1]==i1) ok=false;
if(z==2 && D[i][j][1][2]==i2) ok=false;
if(3<=z && z<=4 && D[i][j][0][2]==i2) ok=false;
if(z==4 && D[i][j][3][1]==i1) ok=false;
if(ok) D[i][j][z]=mn(D[i][j][z], p3{dist[i1][i2]+E[idx1][2], i1, i2});
//if(ok) printf("i=%d, j=%d, i1=%d, i2=%d\n", i, j, i1, i2);
//if(ok) printf("D[%d][%d][%d][0]=%lld\n", i, j, z, D[i][j][z][0]);
}
if(D[i][j][z][0]==INF) D[i][j][z][0]=-1;
}
}
/*
for(int i=1;i<=N;i++) for(int j=1;j<=N;j++){
printf("%d %d: \n", i, j);
print(D[i][j]);
}
*/
}
node seg[4*mxQ];
void init(int idx, int s, int e){
if(s==e){
seg[idx]=D[A[s]][A[s+1]];
//printf("s=%d, e=%d\n", s, e);
//print(seg[idx]);
return;
}
int mid=(s+e)/2;
init(2*idx, s, mid);
init(2*idx+1, mid+1, e);
seg[idx]=mrg(seg[2*idx], seg[2*idx+1]);
//printf("s=%d, e=%d\n", s, e);
//print(seg[idx]);
}
void upd(int idx, int s, int e, int pos){
if(s==e){
seg[idx]=D[A[s]][A[s+1]];
return;
}
int mid=(s+e)/2;
if(pos<=mid) upd(2*idx, s, mid, pos);
else upd(2*idx+1, mid+1, e, pos);
seg[idx]=mrg(seg[2*idx], seg[2*idx+1]);
}
void sweep(){
init(1, 1, L-1);
for(int i=1;i<=Q;i++){
A[qry[i].fi]=qry[i].se;
if(qry[i].fi!=L) upd(1, 1, L-1, qry[i].fi);
if(qry[i].fi!=1) upd(1, 1, L-1, qry[i].fi-1);
cout << seg[1][0][0] << '\n';
}
}
int main(){
gibon
input();
makeGraph();
solvDist();
makeD();
sweep();
}
Compilation message
wild_boar.cpp: In function 'void makeGraph()':
wild_boar.cpp:104:20: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::array<long long int, 3> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
104 | if(ipos!=v[e].size()-1) nv[now].emplace_back(4*M+pdeg[e-1]+ipos+1, 0);
| ~~~~^~~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
8784 KB |
Output is correct |
2 |
Correct |
2 ms |
8784 KB |
Output is correct |
3 |
Correct |
2 ms |
8784 KB |
Output is correct |
4 |
Correct |
2 ms |
9008 KB |
Output is correct |
5 |
Correct |
2 ms |
8784 KB |
Output is correct |
6 |
Correct |
2 ms |
8784 KB |
Output is correct |
7 |
Correct |
2 ms |
8784 KB |
Output is correct |
8 |
Correct |
2 ms |
8952 KB |
Output is correct |
9 |
Correct |
2 ms |
8784 KB |
Output is correct |
10 |
Correct |
2 ms |
8784 KB |
Output is correct |
11 |
Correct |
2 ms |
8784 KB |
Output is correct |
12 |
Correct |
2 ms |
8784 KB |
Output is correct |
13 |
Correct |
2 ms |
8784 KB |
Output is correct |
14 |
Correct |
2 ms |
8784 KB |
Output is correct |
15 |
Correct |
3 ms |
8784 KB |
Output is correct |
16 |
Correct |
2 ms |
8784 KB |
Output is correct |
17 |
Correct |
2 ms |
8784 KB |
Output is correct |
18 |
Correct |
2 ms |
8784 KB |
Output is correct |
19 |
Correct |
2 ms |
10832 KB |
Output is correct |
20 |
Correct |
2 ms |
10832 KB |
Output is correct |
21 |
Correct |
2 ms |
8784 KB |
Output is correct |
22 |
Correct |
2 ms |
8784 KB |
Output is correct |
23 |
Correct |
2 ms |
8784 KB |
Output is correct |
24 |
Correct |
2 ms |
8784 KB |
Output is correct |
25 |
Correct |
2 ms |
8784 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
8784 KB |
Output is correct |
2 |
Correct |
2 ms |
8784 KB |
Output is correct |
3 |
Correct |
2 ms |
8784 KB |
Output is correct |
4 |
Correct |
2 ms |
9008 KB |
Output is correct |
5 |
Correct |
2 ms |
8784 KB |
Output is correct |
6 |
Correct |
2 ms |
8784 KB |
Output is correct |
7 |
Correct |
2 ms |
8784 KB |
Output is correct |
8 |
Correct |
2 ms |
8952 KB |
Output is correct |
9 |
Correct |
2 ms |
8784 KB |
Output is correct |
10 |
Correct |
2 ms |
8784 KB |
Output is correct |
11 |
Correct |
2 ms |
8784 KB |
Output is correct |
12 |
Correct |
2 ms |
8784 KB |
Output is correct |
13 |
Correct |
2 ms |
8784 KB |
Output is correct |
14 |
Correct |
2 ms |
8784 KB |
Output is correct |
15 |
Correct |
3 ms |
8784 KB |
Output is correct |
16 |
Correct |
2 ms |
8784 KB |
Output is correct |
17 |
Correct |
2 ms |
8784 KB |
Output is correct |
18 |
Correct |
2 ms |
8784 KB |
Output is correct |
19 |
Correct |
2 ms |
10832 KB |
Output is correct |
20 |
Correct |
2 ms |
10832 KB |
Output is correct |
21 |
Correct |
2 ms |
8784 KB |
Output is correct |
22 |
Correct |
2 ms |
8784 KB |
Output is correct |
23 |
Correct |
2 ms |
8784 KB |
Output is correct |
24 |
Correct |
2 ms |
8784 KB |
Output is correct |
25 |
Correct |
2 ms |
8784 KB |
Output is correct |
26 |
Correct |
3 ms |
15184 KB |
Output is correct |
27 |
Correct |
21 ms |
68944 KB |
Output is correct |
28 |
Correct |
20 ms |
68944 KB |
Output is correct |
29 |
Correct |
116 ms |
81428 KB |
Output is correct |
30 |
Correct |
101 ms |
81416 KB |
Output is correct |
31 |
Correct |
99 ms |
81252 KB |
Output is correct |
32 |
Correct |
99 ms |
81224 KB |
Output is correct |
33 |
Correct |
102 ms |
93512 KB |
Output is correct |
34 |
Correct |
111 ms |
93456 KB |
Output is correct |
35 |
Correct |
100 ms |
93512 KB |
Output is correct |
36 |
Correct |
99 ms |
93512 KB |
Output is correct |
37 |
Correct |
107 ms |
93524 KB |
Output is correct |
38 |
Correct |
112 ms |
103752 KB |
Output is correct |
39 |
Correct |
109 ms |
105740 KB |
Output is correct |
40 |
Correct |
98 ms |
105748 KB |
Output is correct |
41 |
Correct |
103 ms |
105768 KB |
Output is correct |
42 |
Correct |
88 ms |
111872 KB |
Output is correct |
43 |
Correct |
93 ms |
116412 KB |
Output is correct |
44 |
Correct |
90 ms |
116228 KB |
Output is correct |
45 |
Correct |
64 ms |
118088 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
8784 KB |
Output is correct |
2 |
Correct |
2 ms |
8784 KB |
Output is correct |
3 |
Correct |
2 ms |
8784 KB |
Output is correct |
4 |
Correct |
2 ms |
9008 KB |
Output is correct |
5 |
Correct |
2 ms |
8784 KB |
Output is correct |
6 |
Correct |
2 ms |
8784 KB |
Output is correct |
7 |
Correct |
2 ms |
8784 KB |
Output is correct |
8 |
Correct |
2 ms |
8952 KB |
Output is correct |
9 |
Correct |
2 ms |
8784 KB |
Output is correct |
10 |
Correct |
2 ms |
8784 KB |
Output is correct |
11 |
Correct |
2 ms |
8784 KB |
Output is correct |
12 |
Correct |
2 ms |
8784 KB |
Output is correct |
13 |
Correct |
2 ms |
8784 KB |
Output is correct |
14 |
Correct |
2 ms |
8784 KB |
Output is correct |
15 |
Correct |
3 ms |
8784 KB |
Output is correct |
16 |
Correct |
2 ms |
8784 KB |
Output is correct |
17 |
Correct |
2 ms |
8784 KB |
Output is correct |
18 |
Correct |
2 ms |
8784 KB |
Output is correct |
19 |
Correct |
2 ms |
10832 KB |
Output is correct |
20 |
Correct |
2 ms |
10832 KB |
Output is correct |
21 |
Correct |
2 ms |
8784 KB |
Output is correct |
22 |
Correct |
2 ms |
8784 KB |
Output is correct |
23 |
Correct |
2 ms |
8784 KB |
Output is correct |
24 |
Correct |
2 ms |
8784 KB |
Output is correct |
25 |
Correct |
2 ms |
8784 KB |
Output is correct |
26 |
Correct |
3 ms |
15184 KB |
Output is correct |
27 |
Correct |
21 ms |
68944 KB |
Output is correct |
28 |
Correct |
20 ms |
68944 KB |
Output is correct |
29 |
Correct |
116 ms |
81428 KB |
Output is correct |
30 |
Correct |
101 ms |
81416 KB |
Output is correct |
31 |
Correct |
99 ms |
81252 KB |
Output is correct |
32 |
Correct |
99 ms |
81224 KB |
Output is correct |
33 |
Correct |
102 ms |
93512 KB |
Output is correct |
34 |
Correct |
111 ms |
93456 KB |
Output is correct |
35 |
Correct |
100 ms |
93512 KB |
Output is correct |
36 |
Correct |
99 ms |
93512 KB |
Output is correct |
37 |
Correct |
107 ms |
93524 KB |
Output is correct |
38 |
Correct |
112 ms |
103752 KB |
Output is correct |
39 |
Correct |
109 ms |
105740 KB |
Output is correct |
40 |
Correct |
98 ms |
105748 KB |
Output is correct |
41 |
Correct |
103 ms |
105768 KB |
Output is correct |
42 |
Correct |
88 ms |
111872 KB |
Output is correct |
43 |
Correct |
93 ms |
116412 KB |
Output is correct |
44 |
Correct |
90 ms |
116228 KB |
Output is correct |
45 |
Correct |
64 ms |
118088 KB |
Output is correct |
46 |
Correct |
221 ms |
89160 KB |
Output is correct |
47 |
Correct |
4166 ms |
204440 KB |
Output is correct |
48 |
Correct |
3907 ms |
248632 KB |
Output is correct |
49 |
Correct |
3657 ms |
287824 KB |
Output is correct |
50 |
Correct |
3783 ms |
288004 KB |
Output is correct |
51 |
Correct |
3579 ms |
287896 KB |
Output is correct |
52 |
Correct |
4141 ms |
288208 KB |
Output is correct |
53 |
Correct |
3937 ms |
288128 KB |
Output is correct |
54 |
Correct |
4103 ms |
288112 KB |
Output is correct |
55 |
Correct |
3976 ms |
288208 KB |
Output is correct |
56 |
Correct |
3986 ms |
313096 KB |
Output is correct |
57 |
Correct |
3664 ms |
340440 KB |
Output is correct |
58 |
Correct |
3703 ms |
370280 KB |
Output is correct |
59 |
Correct |
3549 ms |
402276 KB |
Output is correct |
60 |
Correct |
3396 ms |
436876 KB |
Output is correct |
61 |
Correct |
3321 ms |
474024 KB |
Output is correct |
62 |
Correct |
3053 ms |
512608 KB |
Output is correct |
63 |
Correct |
2674 ms |
554208 KB |
Output is correct |
64 |
Correct |
1732 ms |
643912 KB |
Output is correct |
65 |
Correct |
1783 ms |
643956 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
8784 KB |
Output is correct |
2 |
Correct |
2 ms |
8784 KB |
Output is correct |
3 |
Correct |
2 ms |
8784 KB |
Output is correct |
4 |
Correct |
2 ms |
9008 KB |
Output is correct |
5 |
Correct |
2 ms |
8784 KB |
Output is correct |
6 |
Correct |
2 ms |
8784 KB |
Output is correct |
7 |
Correct |
2 ms |
8784 KB |
Output is correct |
8 |
Correct |
2 ms |
8952 KB |
Output is correct |
9 |
Correct |
2 ms |
8784 KB |
Output is correct |
10 |
Correct |
2 ms |
8784 KB |
Output is correct |
11 |
Correct |
2 ms |
8784 KB |
Output is correct |
12 |
Correct |
2 ms |
8784 KB |
Output is correct |
13 |
Correct |
2 ms |
8784 KB |
Output is correct |
14 |
Correct |
2 ms |
8784 KB |
Output is correct |
15 |
Correct |
3 ms |
8784 KB |
Output is correct |
16 |
Correct |
2 ms |
8784 KB |
Output is correct |
17 |
Correct |
2 ms |
8784 KB |
Output is correct |
18 |
Correct |
2 ms |
8784 KB |
Output is correct |
19 |
Correct |
2 ms |
10832 KB |
Output is correct |
20 |
Correct |
2 ms |
10832 KB |
Output is correct |
21 |
Correct |
2 ms |
8784 KB |
Output is correct |
22 |
Correct |
2 ms |
8784 KB |
Output is correct |
23 |
Correct |
2 ms |
8784 KB |
Output is correct |
24 |
Correct |
2 ms |
8784 KB |
Output is correct |
25 |
Correct |
2 ms |
8784 KB |
Output is correct |
26 |
Correct |
3 ms |
15184 KB |
Output is correct |
27 |
Correct |
21 ms |
68944 KB |
Output is correct |
28 |
Correct |
20 ms |
68944 KB |
Output is correct |
29 |
Correct |
116 ms |
81428 KB |
Output is correct |
30 |
Correct |
101 ms |
81416 KB |
Output is correct |
31 |
Correct |
99 ms |
81252 KB |
Output is correct |
32 |
Correct |
99 ms |
81224 KB |
Output is correct |
33 |
Correct |
102 ms |
93512 KB |
Output is correct |
34 |
Correct |
111 ms |
93456 KB |
Output is correct |
35 |
Correct |
100 ms |
93512 KB |
Output is correct |
36 |
Correct |
99 ms |
93512 KB |
Output is correct |
37 |
Correct |
107 ms |
93524 KB |
Output is correct |
38 |
Correct |
112 ms |
103752 KB |
Output is correct |
39 |
Correct |
109 ms |
105740 KB |
Output is correct |
40 |
Correct |
98 ms |
105748 KB |
Output is correct |
41 |
Correct |
103 ms |
105768 KB |
Output is correct |
42 |
Correct |
88 ms |
111872 KB |
Output is correct |
43 |
Correct |
93 ms |
116412 KB |
Output is correct |
44 |
Correct |
90 ms |
116228 KB |
Output is correct |
45 |
Correct |
64 ms |
118088 KB |
Output is correct |
46 |
Correct |
221 ms |
89160 KB |
Output is correct |
47 |
Correct |
4166 ms |
204440 KB |
Output is correct |
48 |
Correct |
3907 ms |
248632 KB |
Output is correct |
49 |
Correct |
3657 ms |
287824 KB |
Output is correct |
50 |
Correct |
3783 ms |
288004 KB |
Output is correct |
51 |
Correct |
3579 ms |
287896 KB |
Output is correct |
52 |
Correct |
4141 ms |
288208 KB |
Output is correct |
53 |
Correct |
3937 ms |
288128 KB |
Output is correct |
54 |
Correct |
4103 ms |
288112 KB |
Output is correct |
55 |
Correct |
3976 ms |
288208 KB |
Output is correct |
56 |
Correct |
3986 ms |
313096 KB |
Output is correct |
57 |
Correct |
3664 ms |
340440 KB |
Output is correct |
58 |
Correct |
3703 ms |
370280 KB |
Output is correct |
59 |
Correct |
3549 ms |
402276 KB |
Output is correct |
60 |
Correct |
3396 ms |
436876 KB |
Output is correct |
61 |
Correct |
3321 ms |
474024 KB |
Output is correct |
62 |
Correct |
3053 ms |
512608 KB |
Output is correct |
63 |
Correct |
2674 ms |
554208 KB |
Output is correct |
64 |
Correct |
1732 ms |
643912 KB |
Output is correct |
65 |
Correct |
1783 ms |
643956 KB |
Output is correct |
66 |
Correct |
29 ms |
46664 KB |
Output is correct |
67 |
Correct |
455 ms |
219720 KB |
Output is correct |
68 |
Correct |
1601 ms |
612492 KB |
Output is correct |
69 |
Correct |
1537 ms |
613436 KB |
Output is correct |
70 |
Correct |
1620 ms |
645192 KB |
Output is correct |
71 |
Correct |
4983 ms |
199956 KB |
Output is correct |
72 |
Correct |
4404 ms |
251356 KB |
Output is correct |
73 |
Correct |
4753 ms |
290760 KB |
Output is correct |
74 |
Correct |
4594 ms |
290600 KB |
Output is correct |
75 |
Correct |
4717 ms |
292612 KB |
Output is correct |
76 |
Correct |
4326 ms |
290180 KB |
Output is correct |
77 |
Correct |
4302 ms |
313416 KB |
Output is correct |
78 |
Correct |
4381 ms |
292400 KB |
Output is correct |
79 |
Correct |
4691 ms |
343236 KB |
Output is correct |
80 |
Correct |
4410 ms |
375612 KB |
Output is correct |
81 |
Correct |
3751 ms |
404464 KB |
Output is correct |
82 |
Correct |
4094 ms |
439400 KB |
Output is correct |
83 |
Correct |
3663 ms |
475644 KB |
Output is correct |
84 |
Correct |
3521 ms |
556908 KB |
Output is correct |
85 |
Correct |
2233 ms |
646820 KB |
Output is correct |