#include <bits/stdc++.h>
using namespace std;
#define popcount(n) (__builtin_popcountll((n)))
#define clz(n) (__builtin_clzll((n)))
#define ctz(n) (__builtin_ctzll((n)))
#define lg(n) (63 - __builtin_clzll((n)))
#define BIT(n, i) (((n) >> (i)) & 1ll)
#define MASK(i) (1ll << (i))
#define FLIP(n, i) ((n) ^ (1ll << (i)))
#define ON(n, i) ((n) | MASK(i))
#define OFF(n, i) ((n) & ~MASK(i))
#define Int __int128
#define fi first
#define se second
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<long long, long long> pll;
typedef pair<long long, int> pli;
typedef pair<int, long long> pil;
typedef vector<pair<int, int>> vii;
typedef vector<pair<long long, long long>> vll;
typedef vector<pair<long long, int>> vli;
typedef vector<pair<int, long long>> vil;
template <class T1, class T2>
bool maximize(T1 &x, T2 y) {
if (x < y) {
x = y;
return true;
}
return false;
}
template <class T1, class T2>
bool minimize(T1 &x, T2 y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template <class T>
void remove_duplicate(vector<T> &ve) {
sort (ve.begin(), ve.end());
ve.resize(unique(ve.begin(), ve.end()) - ve.begin());
}
mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count());
template <class T> T random(T l, T r) {
return uniform_int_distribution<T>(l, r)(rng);
}
template <class T> T random(T r) {
return rng() % r;
}
const int N = 1e6 + 5;
const int MOD = 1e9 + 7;
const int inf = 1e9;
const long long INF = 1e18;
int n, q;
vector<int> X, Y, T, B, L, R;
namespace sub124 {
vector<ll> solve() {
vector<vector<int>> c(n, vector<int>(n, 0));
for (int i = 0; i < n; ++i) c[0][i] = X[i];
for (int i = 0; i < n; ++i) c[i][0] = Y[i];
// for (int i = 1; i < n; ++i) for (int j = 1; j < n; ++j) {
// if (i > 5 && j > 5) break;
// if (!c[i - 1][j] && !c[i][j - 1]) {
// for (int k = 0; i + k < n && j + k < n; ++k)
// c[i + k][j + k] = 1;
// }
// }
for (int i = 1; i < n; ++i) for (int j = 1; j < n; ++j) {
c[i][j] = !(c[i - 1][j] | c[i][j - 1]);
}
// for (int i = 0; i < n; ++i) {
// for (int j = 0; j < n; ++j) cerr << c[i][j];
// cerr << '\n';
// }
vector<vector<ll>> pref(n, vector<ll>(n, 0));
for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {
pref[i][j] = c[i][j];
if (i > 0) pref[i][j] += pref[i - 1][j];
if (j > 0) pref[i][j] += pref[i][j - 1];
if (i > 0 && j > 0) pref[i][j] -= pref[i - 1][j - 1];
}
auto get = [&](int x, int y, int u, int v) {
ll ans = pref[u][v];
if (x > 0) ans -= pref[x - 1][v];
if (y > 0) ans -= pref[u][y - 1];
if (x > 0 && y > 0) ans += pref[x - 1][y - 1];
return ans;
};
vector<ll> ans(q);
for (int i = 0; i < q; ++i) {
ans[i] = get(T[i], L[i], B[i], R[i]);
}
return ans;
}
}
namespace sub3 {
bool check() {
for (int i = 0; i < q; ++i) if (T[i] != 0 || B[i] != 0) {
return false;
}
return true;
}
vector<ll> solve() {
vector<int> pref(n, 0); vector<ll> ans(q, 0); pref[0] = X[0];
for (int i = 1; i < n; ++i) pref[i] = pref[i - 1] + X[i];
for (int i = 0; i < q; ++i) {
ans[i] = pref[R[i]] - (L[i] == 0 ? 0 : pref[L[i] - 1]);
}
return ans;
}
}
namespace sub5 {
bool check() {
for (int i = 0; i < n; ++i) if (X[i] != 0 || Y[i] != 0) {
return false;
}
return true;
}
vector<ll> solve() {
vector<ll> ans(q, 0);
auto countEven = [&](int l, int r) {
return (r / 2) - ((l - 1) / 2);
};
for (int i = 0; i < q; ++i) {
maximize(T[i], 1), maximize(L[i], 1);
int evenX = countEven(T[i], B[i]), oddX = (B[i] - T[i] + 1) - evenX,
evenY = countEven(L[i], R[i]), oddY = (R[i] - L[i] + 1) - evenY;
ans[i] = 0ll + 1ll * evenX * evenY + 1ll * oddX * oddY;
}
return ans;
}
}
namespace sub678 {
const int MAGIC = 6;
int encode(int x, int y) {
if (x < MAGIC) return x * n + y;
return MAGIC * n + (x - MAGIC) * MAGIC + y;
}
vector<ll> solve() {
int sz = 2 * MAGIC * n - MAGIC * MAGIC;
vector<int> c(sz, 0);
for (int i = 0; i < n; ++i) {
c[encode(0, i)] = X[i];
c[encode(i, 0)] = Y[i];
}
vector<int> diag(2 * n + 1, -1);
for (int i = 1; i < MAGIC; ++i) for (int j = 1; j < n; ++j) {
c[encode(i, j)] = !(c[encode(i - 1, j)] | c[encode(i, j - 1)]);
if (c[encode(i, j)] && diag[j - i + n] == -1) diag[j - i + n] = i;
}
for (int i = MAGIC; i < n; ++i) for (int j = 1; j < MAGIC; ++j) {
c[encode(i, j)] = !(c[encode(i - 1, j)] | c[encode(i, j - 1)]);
if (c[encode(i, j)] && diag[j - i + n] == -1) diag[j - i + n] = i;
}
vector<ll> ans(q, 0);
for (int i = 0; i < q; ++i) {
for (int k = 0; k <= n; ++k) {
int minX = max(diag[k + n], T[i]), minY = max(k + diag[k + n] - n, L[i]);
ans[i] += min(B[i] - minX + 1, R[i] - minY + 1);
}
}
return ans;
}
}
vector<ll> mosaic(vector<int> _X, vector<int> _Y, vector<int> _T, vector<int> _B, vector<int> _L, vector<int> _R) {
X = _X, Y = _Y, T = _T, B = _B, L = _L, R = _R;
n = X.size(), q = T.size();
// if (n <= 5000) return sub124::solve();
if (sub3::check()) return sub3::solve();
if (sub5::check()) return sub5::solve();
return sub678::solve();
}
void get(vector<int> &container) {
for (auto &x : container) cin >> x;
}
#ifdef hwe
signed main() {
ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
int n, q; cin >> n >> q;
vector<int> X(n, 0), Y(n, 0), T(q, 0), B(q, 0), L(q), R(q);
get(X), get(Y);
get(T), get(B);
get(L), get(R);
vector<ll> ans = mosaic(X, Y, T, B, L, R);
for (auto &x : ans) cerr << x << ' ';
cerr << '\n';
cerr << '\n'; return 0;
}
#endif
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Runtime error |
1 ms |
592 KB |
Execution killed with signal 6 |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
336 KB |
Output is correct |
2 |
Correct |
1 ms |
336 KB |
Output is correct |
3 |
Runtime error |
3 ms |
592 KB |
Execution killed with signal 6 |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
336 KB |
Output is correct |
2 |
Correct |
1 ms |
336 KB |
Output is correct |
3 |
Runtime error |
3 ms |
592 KB |
Execution killed with signal 6 |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
99 ms |
16668 KB |
Output is correct |
2 |
Correct |
119 ms |
16852 KB |
Output is correct |
3 |
Correct |
87 ms |
16664 KB |
Output is correct |
4 |
Correct |
87 ms |
16712 KB |
Output is correct |
5 |
Correct |
80 ms |
14156 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
336 KB |
Output is correct |
2 |
Correct |
1 ms |
336 KB |
Output is correct |
3 |
Runtime error |
3 ms |
592 KB |
Execution killed with signal 6 |
4 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
69 ms |
11800 KB |
Output is correct |
2 |
Correct |
106 ms |
16116 KB |
Output is correct |
3 |
Correct |
96 ms |
15944 KB |
Output is correct |
4 |
Correct |
90 ms |
15900 KB |
Output is correct |
5 |
Correct |
124 ms |
17876 KB |
Output is correct |
6 |
Correct |
138 ms |
18200 KB |
Output is correct |
7 |
Correct |
92 ms |
16088 KB |
Output is correct |
8 |
Correct |
93 ms |
15900 KB |
Output is correct |
9 |
Correct |
120 ms |
13588 KB |
Output is correct |
10 |
Correct |
81 ms |
15752 KB |
Output is correct |
11 |
Correct |
71 ms |
13640 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1060 ms |
26952 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
99 ms |
16668 KB |
Output is correct |
2 |
Correct |
119 ms |
16852 KB |
Output is correct |
3 |
Correct |
87 ms |
16664 KB |
Output is correct |
4 |
Correct |
87 ms |
16712 KB |
Output is correct |
5 |
Correct |
80 ms |
14156 KB |
Output is correct |
6 |
Execution timed out |
1060 ms |
26952 KB |
Time limit exceeded |
7 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Runtime error |
1 ms |
592 KB |
Execution killed with signal 6 |
2 |
Halted |
0 ms |
0 KB |
- |