/* https://codeforces.com/blog/entry/68748 */
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cassert>
#include <vector>
#include <deque>
typedef long long ll;
//typedef long double ld;
typedef double ld;
typedef std::pair<int, int> pi;
typedef std::vector<int> Vint;
typedef std::vector<ld> Vld;
const ld INF = 1e17;
const ld TOL = 1e-6;
const ld PI = acos(-1);
const int LEN = 20005;
inline int sign(const ll& x) { return x < 0 ? -1 : !!x; }
inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; }
inline bool zero(const ld& x) { return !sign(x); }
inline bool eq(const ld& u, const ld& v) { return zero(u - v); }
#define INT
#define FIT
void cut(const int& i, const int& cnt) { std::cout << "scissors\n"; std::cout << i << " " << cnt << "\n"; }
void tape(const int& cnt, const Vint& I) { std::cout << "tape\n"; std::cout << cnt; for (const int& i : I) std::cout << " " << i; std::cout << "\n"; }
int N, M;
struct Pii {
int x, y;
Pii(int X = 0, int Y = 0) : x(X), y(Y) {}
bool operator == (const Pii& p) const { return x == p.x &&y == p.y; }
bool operator != (const Pii& p) const { return x == p.x || y == p.y; }
bool operator < (const Pii& p) const { return x == p.x ? y < p.y : x < p.x; }
Pii operator + (const Pii& p) const { return { x + p.x, y + p.y }; }
Pii operator - (const Pii& p) const { return { x - p.x, y - p.y }; }
Pii operator * (const int& scalar) const { return { x * scalar, y * scalar }; }
Pii operator / (const int& scalar) const { return { x / scalar, y / scalar }; }
ll operator * (const Pii& p) const { return (ll)x * p.x + (ll)y * p.y; }
ll operator / (const Pii& p) const { return (ll)x * p.y - (ll)y * p.x; }
Pii& operator += (const Pii& p) { x += p.x; y += p.y; return *this; }
Pii& operator -= (const Pii& p) { x -= p.x; y -= p.y; return *this; }
Pii& operator *= (const int& scale) { x *= scale; y *= scale; return *this; }
Pii& operator /= (const int& scale) { x /= scale; y /= scale; return *this; }
Pii operator - () const { return { -x, -y }; }
Pii operator ~ () const { return { -y, x }; }
ll Euc() const { return (ll)x * x + (ll)y * y; }
friend std::istream& operator >> (std::istream& is, Pii& p) { is >> p.x >> p.y; return is; }
friend std::ostream& operator << (std::ostream& os, const Pii& p) { os << p.x << " " << p.y; return os; }
}; const Pii Oii = Pii();
typedef std::vector<Pii> Vpii;
Vpii Sii, Tii;
void print(const Vpii& H) { std::cout << H.size(); for (const Pii& p : H) std::cout << " " << p; std::cout << "\n"; return; }
ll cross(const Pii& d1, const Pii& d2, const Pii& d3) { return (d2 - d1) / (d3 - d2); }
ll cross(const Pii& d1, const Pii& d2, const Pii& d3, const Pii& d4) { return (d2 - d1) / (d4 - d3); }
int ccw(const Pii& d1, const Pii& d2, const Pii& d3) { ll ret = cross(d1, d2, d3); return sign(ret); }
int ccw(const Pii& d1, const Pii& d2, const Pii& d3, const Pii& d4) { ll ret = cross(d1, d2, d3, d4); return sign(ret); }
ll dot(const Pii& d1, const Pii& d2, const Pii& d3) { return (d2 - d1) * (d3 - d2); }
ll dot(const Pii& d1, const Pii& d2, const Pii& d3, const Pii& d4) { return (d2 - d1) * (d4 - d3); }
bool on_seg_strong(const Pii& d1, const Pii& d2, const Pii& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) >= 0; }
bool on_seg_weak(const Pii& d1, const Pii& d2, const Pii& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) > 0; }
bool intersect(const Pii& s1, const Pii& s2, const Pii& d1, const Pii& d2) {
bool f1 = ccw(s1, s2, d1) * ccw(s2, s1, d2) > 0;
bool f2 = ccw(d1, d2, s1) * ccw(d2, d1, s2) > 0;
return f1 && f2;
}
ll area(const Vpii& H) {
ll a = 0;
int sz = H.size();
for (int i = 0; i < sz; i++) a += H[i] / H[(i + 1) % sz];
return a;
}
void norm(Vpii& H) { ll a = area(H); if (sign(a) < 0) std::reverse(H.begin(), H.end()); }
bool inside(const Pii& p0, const Pii& p1, const Pii& p2, const Pii& q) {
if (ccw(p0, p1, p2) < 0) return ccw(p0, p1, q) > 0 || ccw(p1, p2, q) > 0;
return ccw(p0, p1, q) > 0 && ccw(p1, p2, q) > 0;
}
bool closer(const Vpii& H, const int& i, const int& j) {
int sz = H.size();
int i0 = (i - 1 + sz) % sz, i2 = (i + 1) % sz;
if (!inside(H[i0], H[i], H[i2], H[j])) return 0;
for (int k0 = 0; k0 < sz; k0++) {
int k1 = (k0 + 1) % sz;
if (k0 == i || k0 == j || k1 == i || k1 == j) continue;
if (intersect(H[i], H[j], H[k0], H[k1])) return 0;
if (on_seg_weak(H[i], H[j], H[k0])) return 0;
if (on_seg_weak(H[i], H[j], H[k1])) return 0;
}
return 1;
}
struct Pos {
ld x, y;
Pos(ld X = 0, ld Y = 0) : x(X), y(Y) {}
bool operator == (const Pos& p) const { return zero(x - p.x) && zero(y - p.y); }
bool operator != (const Pos& p) const { return !zero(x - p.x) || !zero(y - p.y); }
bool operator < (const Pos& p) const { return zero(x - p.x) ? y < p.y : x < p.x; }
Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; }
Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; }
Pos operator * (const ld& scalar) const { return { x * scalar, y * scalar }; }
Pos operator / (const ld& scalar) const { return { x / scalar, y / scalar }; }
ld operator * (const Pos& p) const { return x * p.x + y * p.y; }
ld operator / (const Pos& p) const { return x * p.y - y * p.x; }
Pos& operator += (const Pos& p) { x += p.x; y += p.y; return *this; }
Pos& operator -= (const Pos& p) { x -= p.x; y -= p.y; return *this; }
Pos& operator *= (const ld& scale) { x *= scale; y *= scale; return *this; }
Pos& operator /= (const ld& scale) { x /= scale; y /= scale; return *this; }
Pos operator - () const { return { -x, -y }; }
Pos operator ~ () const { return { -y, x }; }
ld Euc() const { return x * x + y * y; }
ld mag() const { return sqrt(Euc()); }
friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; }
friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; }
}; const Pos O = { 0, 0 };
typedef std::vector<Pos> Polygon;
Polygon S, T;
Polygon P[LEN]; int t;
Polygon TRI[20]; int tr;
Pos cnv(const Pii& p) { return Pos(p.x, p.y); }
void print(const Polygon& H) { std::cout << H.size(); for (const Pos& p : H) std::cout << " " << p; std::cout << "\n"; return; }
ld cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); }
ld cross(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) / (d4 - d3); }
int ccw(const Pos& d1, const Pos& d2, const Pos& d3) { ld ret = cross(d1, d2, d3); return sign(ret); }
int ccw(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { ld ret = cross(d1, d2, d3, d4); return sign(ret); }
ld dot(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) * (d3 - d2); }
ld dot(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) * (d4 - d3); }
bool on_seg_strong(const Pos& d1, const Pos& d2, const Pos& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) >= 0; }
bool on_seg_weak(const Pos& d1, const Pos& d2, const Pos& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) > 0; }
Pos intersection(const Pos& p1, const Pos& p2, const Pos& q1, const Pos& q2) { ld a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return (p1 * a2 + p2 * a1) / (a1 + a2); }
bool intersect(const Pos& s1, const Pos& s2, const Pos& d1, const Pos& d2) {
bool f1 = ccw(s1, s2, d1) * ccw(s2, s1, d2) > 0;
bool f2 = ccw(d1, d2, s1) * ccw(d2, d1, s2) > 0;
return f1 && f2;
}
ld area(const Polygon& H) {
ld a = 0;
int sz = H.size();
for (int i = 0; i < sz; i++) a += H[i] / H[(i + 1) % sz];
return a * .5;
}
void norm(Polygon& H) { ld a = area(H); if (sign(a) < 0) std::reverse(H.begin(), H.end()); }
Polygon box(const ld& x0, const ld& y0, const ld& x1, const ld& y1) { return { Pos(x0, y0), Pos(x1, y0), Pos(x1, y1), Pos(x0, y1) }; }
bool inside(const Pos& p0, const Pos& p1, const Pos& p2, const Pos& q) {
if (ccw(p0, p1, p2) < 0) return ccw(p0, p1, q) > 0 || ccw(p1, p2, q) > 0;
return ccw(p0, p1, q) > 0 && ccw(p1, p2, q) > 0;
}
bool closer(const Polygon& H, const int& i, const int& j) {
int sz = H.size();
int i0 = (i - 1 + sz) % sz, i2 = (i + 1) % sz;
if (!inside(H[i0], H[i], H[i2], H[j])) return 0;
for (int k0 = 0; k0 < sz; k0++) {
int k1 = (k0 + 1) % sz;
if (k0 == i || k0 == j || k1 == i || k1 == j) continue;
if (intersect(H[i], H[j], H[k0], H[k1])) return 0;
if (on_seg_weak(H[i], H[j], H[k0])) return 0;
if (on_seg_weak(H[i], H[j], H[k1])) return 0;
}
return 1;
}
#ifdef INT
void triangulation_int(const Vpii& H) {
int sz = H.size();
if (sz == 3) {
const Pii& p0 = H[0], p1 = H[1], p2 = H[2];
ll l0 = (p0 - p1).Euc(), l1 = (p1 - p2).Euc(), l2 = (p2 - p0).Euc();
ll lmax = std::max({ l0, l1, l2 });
Polygon tri;
for (int i = 0; i < 3; i++) {
const Pii& q0 = H[i], q1 = H[(i + 1) % 3], q2 = H[(i + 2) % 3];
Pii v = q0 - q1;
l0 = v.Euc();
if (l0 == lmax) {
tri = { cnv(q0), cnv(q1), cnv(q2) };
break;
}
}
TRI[tr++] = tri;
return;
}
for (int i = 0; i < sz; i++) {
for (int j = i + 1; j < sz; j++) {
if (closer(H, i, j)) {
Vpii H1, H2;
for (int k = i; k != (j + 1) % sz; k = (k + 1) % sz) H1.push_back(H[k]);
for (int k = j; k != (i + 1) % sz; k = (k + 1) % sz) H2.push_back(H[k]);
triangulation_int(H1);
triangulation_int(H2);
return;
}
}
}
return;
}
#endif
void triangulation(const Polygon& H) {
int sz = H.size();
if (sz == 3) {
const Pos& p0 = H[0], p1 = H[1], p2 = H[2];
ld l0 = (p0 - p1).mag(), l1 = (p1 - p2).mag(), l2 = (p2 - p0).mag();
ld lmax = std::max({ l0, l1, l2 });
Polygon tri;
for (int i = 0; i < 3; i++) {
const Pos& q0 = H[i], q1 = H[(i + 1) % 3], q2 = H[(i + 2) % 3];
Pos v = q0 - q1;
l0 = v.mag();
if (eq(l0, lmax)) {
tri = { q0, q1, q2 };
break;
}
}
TRI[tr++] = tri;
return;
}
for (int i = 0; i < sz; i++) {
for (int j = i + 1; j < sz; j++) {
if (closer(H, i, j)) {
Polygon H1, H2;
for (int k = i; k != (j + 1) % sz; k = (k + 1) % sz) H1.push_back(H[k]);
for (int k = j; k != (i + 1) % sz; k = (k + 1) % sz) H2.push_back(H[k]);
triangulation(H1);
triangulation(H2);
return;
}
}
}
return;
}
void tri_to_rect(const int& i, Vint& id) {
Polygon& H = P[i];
int sz = H.size();
assert(sz == 3);
const Pos& p0 = H[0], p1 = H[1], p2 = H[2];
Pos v = p0 - p1;
Pos pl = (p0 + p2) * .5, pr = (p1 + p2) * .5;
Pos m = intersection(pl, pr, p2, p2 + ~v);
Polygon R0 = { p0, p1, pr, pl }, Tl = { p2, pl, m }, Tr = { p2, m, pr };
ld dd = (p0 - p1).mag();
ld dr = (pr - m).mag();
ld dl = (pl - m).mag();
ld h = std::abs(cross(p0, p1, p2)) / dd / 2;
Polygon R0_ = { O, Pos(dd, 0), Pos(dd - dr, h), Pos(dl, h) };
Polygon Tl_ = { O, Pos(dl, h), Pos(0, h) };
Polygon Tr_ = { Pos(dd, 0), Pos(dd, h), Pos(dd - dr, h) };
Polygon R = box(0, 0, dd, h);
Vint I = { t, t + 1, t + 2 };
cut(i, 3); print(R0); print(Tl); print(Tr);
tape(3, I); print(R0_); print(Tl_); print(Tr_); print(R);
t += 3;
id.push_back(t);
P[t++] = R;
return;
}
void rect_to_rect(const int& i, const ld& x, const ld& y, const ld& l, Vint& id) {
if (eq(x, l)) { id.push_back(i); return; }
if (sign(x - l * 2) >= 0 || sign(l - x * 2) >= 0) {
Polygon R0, R1, R2, R2_;
ld nx, ny;
if (sign(x - l * 2) >= 0) {
nx = x * .5; ny = y * 2;
R0 = box(0, 0, nx, ny); R1 = box(0, 0, nx, y); R2 = box(nx, 0, x, y);
R2_ = box(0, y, nx, ny);
}
else if (sign(l - x * 2) >= 0) {
nx = x * 2; ny = y * .5;
R0 = box(0, 0, nx, ny); R1 = box(0, 0, x, ny), R2 = box(0, ny, x, y);
R2_ = box(x, 0, nx, ny);
}
Vint I = { t, t + 1 };
cut(i, 2); print(R1); print(R2);
tape(2, I); print(R1); print(R2_); print(R0);
t += 2;
P[t++] = R0;
rect_to_rect(t - 1, nx, ny, l, id);
return;
}
Polygon R0, TZ, TB, TS;
Pos m, vb, vs;
ld h = (x * y) / l, dx, dy;
dx = std::abs(x - l);
dy = std::abs(y - h);
R0 = box(0, 0, l, h);
if (sign(x - l) > 0) {
m = Pos(l, dy);
TZ = { O, Pos(l, 0), m, Pos(dx, y), Pos(0, y) };
TB = { Pos(dx, y), Pos(x, 0), Pos(x, y) };
TS = { Pos(l, 0), Pos(x, 0), m };
vb = Pos(-dx, dy);
vs = Pos(-l, y);
}
else {
m = Pos(dx, h);
TZ = { O, Pos(x, 0), Pos(x, dy), m, Pos(0, h) };
TB = { Pos(0, y), Pos(x, dy), Pos(x, y) };
TS = { Pos(0, h), m, Pos(0, y)};
vb = Pos(dx, -dy);
vs = Pos(x, -h);
}
cut(i, 3); print(TZ); print(TB); print(TS);
for (Pos& b : TB) b += vb;
for (Pos& s : TS) s += vs;
Vint I = { t, t + 1, t + 2 };
tape(3, I); print(TZ); print(TB); print(TS); print(R0);
t += 3;
id.push_back(t);
P[t++] = R0;
return;
}
void rect_to_rect(const int& i, const ld& l, Vint& id) {
Polygon H = P[i];
int sz = H.size();
assert(sz == 4);
ld x = H[1].x - H[0].x;
ld y = H[3].y - H[0].y;
rect_to_rect(i, x, y, l, id);
return;
}
void rect_to_square(const ld& l, Vint& id) {
Polygon square = box(0, 0, l, l);
tape(id.size(), id);
ld y = 0;
for (const int& i : id) {
Polygon B = P[i];
assert(B.size() == 4);
for (Pos& b : B) b.y += y;
print(B);
y = B[2].y;
}
//std::cout << "SQUARE::\n";
//std::cout << "SQUARE::\n";
//std::cout << "SQUARE::\n";
print(square);
P[t++] = square;
return;
}
void square_split(Vint& id) {
tr = 1;
#ifdef INT
assert(area(Sii) == area(Tii));
ld l = sqrt(area(Tii) * .5);
triangulation_int(Tii);
#else
assert(eq(area(S), area(T)));
ld l = sqrt(area(T));
triangulation(T);
#endif
//std::cout << "TTTTTT:: " << t << "\n";
cut(t - 1, tr - 1);
ld y = 0;
for (int i = 1; i < tr; i++) {
ld a = std::abs(area(TRI[i]));
ld h = a / l;
Polygon B = box(0, y, l, y + h);
print(B);
id.push_back(t);
P[t++] = B;
y += h;
}
return;
}
void rect_to_tri(int rt, const int& tt, Vint& id) {
Polygon H = TRI[tt];
int sz = H.size();
assert(sz == 3);
const Pos& p0 = H[0], p1 = H[1], p2 = H[2];
Pos v = p0 - p1;
ld l0 = v.mag();
Vint idx;
assert(P[rt].size() == 4);
rect_to_rect(rt, l0, idx);
assert(idx.size() == 1);
rt = idx[0];
assert(rt == t - 1);
Polygon R = P[t - 1];
Pos pl = (p0 + p2) * .5, pr = (p1 + p2) * .5;
Pos m = intersection(pl, pr, p2, p2 + ~v);
Polygon R0 = { p0, p1, pr, pl }, Tl = { p2, pl, m }, Tr = { p2, m, pr };
ld dd = (p0 - p1).mag();
ld dr = (pr - m).mag();
ld dl = (pl - m).mag();
ld h = std::abs(cross(p0, p1, p2)) / dd / 2;
Polygon R0_ = { Pos(0, 0), Pos(dd, 0), Pos(dd - dr, h), Pos(dl, h) };
Polygon Tl_ = { Pos(0, 0), Pos(dl, h), Pos(0, h) };
Polygon Tr_ = { Pos(dd, 0), Pos(dd, h), Pos(dd - dr, h) };
#ifdef FIT
ld y = P[rt][0].y;
for (Pos& p : R0_) p.y += y;
for (Pos& p : Tl_) p.y += y;
for (Pos& p : Tr_) p.y += y;
#endif
Vint I = { t, t + 1, t + 2 };
cut(rt, 3); print(R0_); print(Tl_); print(Tr_);
tape(3, I); print(R0); print(Tl); print(Tr); print(H);
t += 3;
id.push_back(t);
P[t++] = H;
return;
}
void start_to_square() {
tr = 1;
#ifdef INT
ld l = sqrt(area(Sii) * .5);
triangulation_int(Sii);
#else
ld l = sqrt(area(S));
triangulation(S);
#endif
//P[0] = S
for (t = 1; t < tr; t++) P[t] = TRI[t];
cut(0, tr - 1);
for (int i = 1; i < t; i++) print(P[i]);
int t1 = t;
Vint id, idx;
for (int i = 1; i < t1; i++) tri_to_rect(i, idx);
for (const int& i : idx) rect_to_rect(i, l, id);
rect_to_square(l, id);
assert(P[t - 1][2] == Pos(l, l));
return;
}
void square_to_target() {
Vint id, idx;
square_split(idx);
int tt = 1;
for (const int& rt : idx) rect_to_tri(rt, tt++, id);
tape(id.size(), id);
for (const int& i : id) print(P[i]);
#ifdef INT
print(Tii);
#else
print(T);
#endif
return;
}
void solve() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout.tie(0);
std::cout << std::fixed;
std::cout.precision(6);
#ifdef INT
std::cin >> N;
Sii.resize(N);
for (Pii& p : Sii) std::cin >> p;
assert(area(Sii) > 0);
std::cin >> M;
Tii.resize(M);
for (Pii& p : Tii) std::cin >> p;
assert(area(Tii) > 0);
#else
std::cin >> N;
S.resize(N);
for (Pos& p : S) std::cin >> p;
assert(area(S) > 0);
std::cin >> M;
T.resize(M);
for (Pos& p : T) std::cin >> p;
assert(area(T) > 0);
#endif
start_to_square();
square_to_target();
return;
}
int main() { solve(); return 0; }//boj17645
/* https://codeforces.com/blog/entry/68748 */
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 16: Intersection of the big shape and the shape set is '0.000000', should be '11.999995', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 16: Intersection of the big shape and the shape set is '172.463673', should be '19012500000.000000', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 16: Intersection of the big shape and the shape set is '0.000000', should be '11.999995', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 14: Intersection of the big shape and the shape set is '647.756935', should be '71409117784.500000', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
848 KB |
used 146 vertices, largest error was 0.00000014404690 |
2 |
Correct |
1 ms |
848 KB |
used 166 vertices, largest error was 0.00000003288626 |
3 |
Correct |
1 ms |
848 KB |
used 166 vertices, largest error was 0.00000004502718 |
4 |
Correct |
1 ms |
944 KB |
used 186 vertices, largest error was 0.00000032086533 |
5 |
Correct |
1 ms |
924 KB |
used 206 vertices, largest error was 0.00000046998689 |
6 |
Correct |
1 ms |
848 KB |
used 166 vertices, largest error was 0.00000010601540 |
7 |
Correct |
2 ms |
848 KB |
used 206 vertices, largest error was 0.00000030628726 |
8 |
Correct |
1 ms |
848 KB |
used 186 vertices, largest error was 0.00000016771845 |
9 |
Correct |
1 ms |
700 KB |
used 166 vertices, largest error was 0.00000010260038 |
10 |
Correct |
1 ms |
848 KB |
used 166 vertices, largest error was 0.00000278305581 |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 16: Intersection of the big shape and the shape set is '0.000000', should be '11.999995', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 16: Intersection of the big shape and the shape set is '0.000000', should be '11.999995', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Incorrect |
1 ms |
848 KB |
Operation 16: Intersection of the big shape and the shape set is '0.000000', should be '11.999995', error '1.000000' (allowed 0.001000) |
2 |
Halted |
0 ms |
0 KB |
- |