# | Submission time | Handle | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
1101964 | 2024-10-17T08:50:02 Z | AnhPham | Nile (IOI24_nile) | C++17 | 0 ms | 0 KB |
#include <bits/stdc++.h> // #ifdef OP_DEBUG // #include <algo/debug.h> // #else // #define debug(...) 26 // #endif using namespace std; // template <class Fun> class y_combinator_result { // Fun fun_; // public: // template <class T> explicit y_combinator_result(T &&fun): fun_(std::forward <T> (fun)) {} // template <class ...Args> decltype(auto) operator()(Args &&...args) { return fun_(std::ref(*this), std::forward <Args> (args)...); } // }; // template <class Fun> decltype(auto) y_combinator(Fun &&fun) { return y_combinator_result <std::decay_t <Fun>> (std::forward <Fun> (fun)); } #define int long long #define eb emplace_back #define sz(v) (int)(v).size() #define all(v) (v).begin(), (v).end() #define TcT template <class T // const int MOD = (int)1e9 + 7, INF = (int)4e18 + 18; // TcT> bool minimize(T &lhs, const T &rhs) { return rhs < lhs ? lhs = rhs, 1 : 0; } // TcT> bool maximize(T &lhs, const T &rhs) { return rhs > lhs ? lhs = rhs, 1 : 0; } // void solve(); // int32_t main() { // cin.tie(nullptr), cout.tie(nullptr) -> sync_with_stdio(false); // int testcases = 1; // #define multitest 0 // if (multitest) { cin >> testcases; } for (; testcases--;) { solve(); } // } // /* [Pham Hung Anh - 12I - Tran Hung Dao High School for Gifted Student] */ const int mxN = 1e5 + 5; int dp[mxN]; vector <tuple <int, int, int>> queries; vector <int> calculate_costs(vector <int> W, vector <int> A, vector <int> B, vector <int> E) { int N = sz(W), Q = sz(E); for (int i = 0; i < N; ++i) queries.eb(W[i], A[i], B[i]); sort(all(queries)); for (int i = 0; i < N; ++i) { auto [w, a, b] = queries[i]; W[i] = w, A[i] = a, B[i] = b; } vector <int> ans; for (int q = 0; q < Q; ++q) { memset(dp, 0, sizeof (dp)); dp[0] = A[0]; for (int i = 1; i < N; ++i) { dp[i] = dp[i - 1] + A[i]; int sum = 0; for (int j = i - 1; j >= 0; --j) { if (W[i] - W[j] <= E[q]) dp[i] = min(dp[i], (j == 0 ? 0 : dp[j - 1]) + B[i] + B[j] + sum); sum += A[j]; } } ans.emplace_back(dp[N - 1]); } }