Submission #1099898

#TimeUsernameProblemLanguageResultExecution timeMemory
1099898model_codeSphinx's Riddle (IOI24_sphinx)C++17
100 / 100
345 ms3252 KiB
// correct/solution-author.cpp #include <bits/stdc++.h> #include "sphinx.h" using namespace std; #ifdef DEBUG #define D(x...) fprintf(stderr, x) #define DA(x) assert(x) #else #define D(x...) #define DA(x) #endif const int MAX_N = 250 + 10; const int ACTUAL_COLOR = -1; using pii = pair<int, int>; // solution to subtask where you just need to identify the color-connected // components namespace collapse { int n; vector<int> adjlist[MAX_N]; vector<int> proposed_colors; namespace components { int TT; int seen[MAX_N]; // Mark all as seen from u. void dfs(int u) { seen[u] = TT; for (auto v : adjlist[u]) { if (proposed_colors[u] != ACTUAL_COLOR && proposed_colors[u] == proposed_colors[v] && seen[v] != TT) { dfs(v); } } } // Return number of components in a vector int num_components(vector<int> &vertices) { TT++; int ret = 0; for (auto u : vertices) { if (seen[u] != TT) { ret++; dfs(u); } } return ret; } } // namespace components namespace forest { int ugroup[MAX_N]; vector<int> members[MAX_N]; vector<int> get_groups(int limit) { vector<int> res; for (int i = 0; i < limit; i++) { if (!members[i].empty()) { res.push_back(i); } } return res; } int get(int x) { return ugroup[x]; } void join(int x, int y) { int gx = get(x); int gy = get(y); if (members[gx].size() > members[gy].size()) { swap(gx, gy); } for (auto u : members[gx]) { ugroup[u] = gy; members[gy].push_back(u); } members[gx].clear(); } // query for number of components in groups [s, e] union {cur} int queryOnly(vector<int> &groups, int s, int e, int cur) { D("queryOnly\n"); fill(proposed_colors.begin(), proposed_colors.end(), n); for (int i = s; i < e; i++) { for (auto u : members[groups[i]]) { D("%d ", u); proposed_colors[u] = ACTUAL_COLOR; } } proposed_colors[cur] = ACTUAL_COLOR; D("%d\n", cur); vector<int> others; for (int i = 0; i < n; i++) { if (proposed_colors[i] == n) { others.push_back(i); } } int others_components = components::num_components(others); auto found = perform_experiment(proposed_colors); auto res = found - others_components; D("queryOnly %d: found %d, others components = %d\n", res, found, others_components); return res; } // how many edges are from cur to vertices in groups [s, e) ? int extra_edges(vector<int> &groups, int s, int e, int cur) { auto if_none = e - s + 1; auto components = queryOnly(groups, s, e, cur); auto edges = if_none - components; D("extra_edges=%d for [%d, %d) with cur=%d: if_none=%d, components=%d\n", edges, s, e, cur, if_none, components); return edges; } // there are num_edges edges from cur to vertices in groups [s,e). // find them and unionise with cur. void solve(vector<int> &groups, int s, int e, int num_edges, int cur) { D("solve(["); for (int i = s; i < e; i++) { D("%d ", groups[i]); } D("], num_edges=%d, cur=%d)\n", num_edges, cur); DA(num_edges <= e - s); if (num_edges == 0) return; if (e - s == num_edges) { for (int i = s; i < e; i++) { auto u = members[groups[i]].front(); D("! identified that %d and %d are in the same color component\n", cur, u); join(cur, u); } return; } DA(e - s > 1); int mid = (e + s) / 2; auto left_edges = extra_edges(groups, s, mid, cur); DA(0 <= left_edges && left_edges <= num_edges); solve(groups, s, mid, left_edges, cur); solve(groups, mid, e, num_edges - left_edges, cur); } void go() { for (int i = 0; i < n; i++) { ugroup[i] = i; members[i].push_back(i); } for (int i = 1; i < n; i++) { auto groups = get_groups(i); D("* i=%d\n", i); auto edges = extra_edges(groups, 0, groups.size(), i); solve(groups, 0, groups.size(), edges, i); } } } // namespace forest vector<int> find_colors(int _n, int m, vector<int> a, vector<int> b) { n = _n; for (int i = 0; i < n; i++) { proposed_colors.push_back(ACTUAL_COLOR); } for (int i = 0; i < m; i++) { auto u = a[i]; auto v = b[i]; adjlist[u].push_back(v); adjlist[v].push_back(u); } forest::go(); vector<int> ret; for (int i = 0; i < n; i++) { int g = forest::get(i); ret.push_back(g); } return ret; } } // namespace collapse namespace grouping { int n; int nCollapsed; int groupOf[MAX_N]; vector<int> members[MAX_N]; vector<int> proposed_colors; /* * Facilitate a query on the "grouping" graph. * * This is equivalent to setting all vertices in a group to the group's color. * If group's color is ACTUAL_COLOR, then all vertices in the group will be set * to ACTUAL_COLOR. Note that this color must be the same for all vertices in * that group, since vertices in the same group belong to the same * color-connected component. * * Returns the number of color-connected components. * Note that this is always the same in the grouping graph as in the original * graph. */ int queryGroups(vector<int> mask) { DA(mask.size() == nCollapsed); for (int i = 0; i < n; i++) { proposed_colors[i] = mask[groupOf[i]]; } return perform_experiment(proposed_colors); } } // namespace grouping // solution to subtask where graph is a coloring namespace coloring { int n; vector<int> adjlist[MAX_N]; vector<int> proposed_colors; int known_colors[MAX_N]; namespace divide { int mark[MAX_N]; void dfs(int u) { for (auto v : adjlist[u]) { if (mark[v] == -1) { mark[v] = mark[u] ^ 1; dfs(v); } } } void go() { fill(mark, mark + n, -1); mark[0] = 0; dfs(0); } } // namespace divide namespace components { int TT; int seen[MAX_N]; // Mark all as seen from u. void dfs(int u) { // D("++ got to %d\n", u); seen[u] = TT; for (auto v : adjlist[u]) { if (proposed_colors[u] != ACTUAL_COLOR && proposed_colors[u] == proposed_colors[v] && seen[v] != TT) { dfs(v); } } } // Return number of components in a vector int num_components(vector<int> &vertices) { TT++; int ret = 0; for (auto u : vertices) { if (seen[u] != TT) { // D("+ new component %d\n", u); ret++; dfs(u); } } return ret; } } // namespace components void print_vec(vector<int> &v) { D("["); for (auto i = 0; i < (int)v.size(); i++) { if (i > 0) { D(", "); } D("%d", v[i]); } D("]"); } // Find all of a particular color in subject, and write it to known_colors, and // return it. Invariant: at least one of color in subject. Invariant: // proposed_colors of all of test is color, proposed_colors of all of subject is // ACTUAL_COLOR (or the actual color). here is number of components for // proposed_colors vector<int> find_of_color(int color, vector<int> &subject, vector<int> &test, int here) { D("find_of_color (color=%d, here=%d):\n", color, here); D(" subject: "); print_vec(subject); D("\n"); D(" test: "); print_vec(test); D("\n"); vector<int> ret; if (subject.size() <= 1) { for (auto u : subject) { known_colors[u] = color; ret.push_back(u); D("! identified %d as %d\n", u, color); } DA(!ret.empty()); return ret; } auto mid = subject.begin() + (subject.size() / 2); auto left = vector<int>(subject.begin(), mid); auto right = vector<int>(mid, subject.end()); // check if any on left first for (auto u : right) { test.push_back(u); proposed_colors[u] = color; } int if_none = left.size() + components::num_components(test); auto actual = grouping::queryGroups(proposed_colors); if (actual < if_none) { // there's some on the left ret = find_of_color(color, left, test, actual); } for (auto u : right) { test.pop_back(); proposed_colors[u] = ACTUAL_COLOR; } // check if left accounts for everything for (auto u : left) { // D("pushing %d [proposed_color=%d]\n", u, proposed_colors[u]); test.push_back(u); if (known_colors[u] == color) { // D("setting %d to %d\n", u, color); proposed_colors[u] = color; } } auto test_components = components::num_components(test); int if_none_right = right.size() + test_components; D("here=%d, if_none_right = %d test_components=%d, test=", here, if_none_right, test_components); print_vec(test); D(" left="); print_vec(left); D(" right="); print_vec(right); D(" ret="); print_vec(ret); D("\n"); if (here < if_none_right) { // there's some on the right auto ret_right = find_of_color(color, right, test, here); for (auto u : ret_right) { ret.push_back(u); } } for (auto u : left) { proposed_colors[u] = ACTUAL_COLOR; test.pop_back(); } /* // check if any on right first for (auto u: left) { test.push_back(u); proposed_colors[u] = color; } if_none = right.size() + components::num_components(test); actual = grouping::queryGroups(proposed_colors); if (actual < if_none) { // there's some on the left auto ret_right = find_of_color(color, right, test, actual); for (auto u: ret_right) { ret.push_back(u); } } for (auto u: left) { test.pop_back(); proposed_colors[u] = ACTUAL_COLOR; } */ DA(!ret.empty()); return ret; } vector<int> find_colors(int _n, int m, vector<int> a, vector<int> b, int num_colors) { n = _n; for (int i = 0; i < n; i++) { proposed_colors.push_back(ACTUAL_COLOR); known_colors[i] = -1; } for (int i = 0; i < m; i++) { auto u = a[i]; auto v = b[i]; adjlist[u].push_back(v); adjlist[v].push_back(u); } if (b.size() == 0) { for (int f = 0; f < num_colors; ++f) { vector<int> ord(num_colors, f); ord[0] = -1; if (perform_experiment(ord) == 1) return {f}; } } vector<int> parts[2]; int comp[2]; divide::go(); for (int i = 0; i < n; i++) { DA(divide::mark[i] == 0 || divide::mark[i] == 1); parts[divide::mark[i]].push_back(i); } for (int z = 0; z < 2; z++) { for (auto u : parts[z]) { proposed_colors[u] = 0; } comp[z] = components::num_components(parts[z]); D("comp[%d] = %d\n", z, comp[z]); for (auto u : parts[z]) { proposed_colors[u] = ACTUAL_COLOR; } } for (int c = 0; c < num_colors; c++) { for (int z = 0; z < 2; z++) { for (int i = 0; i < n; i++) { DA(proposed_colors[i] == ACTUAL_COLOR); } for (auto u : parts[z ^ 1]) { proposed_colors[u] = c; } int if_none = parts[z].size() + comp[z ^ 1]; auto init = grouping::queryGroups(proposed_colors); D("* trying color=%d, z=%d [if_none=%d, init=%d]\n", c, z, if_none, init); if (init < if_none) { D("* starting color=%d, z=%d [if_none=%d, init=%d]\n", c, z, if_none, init); find_of_color(c, parts[z], parts[z ^ 1], init); } for (auto u : parts[z ^ 1]) { proposed_colors[u] = ACTUAL_COLOR; } } } return vector<int>(known_colors, known_colors + n); } } // namespace coloring vector<int> find_colours(int n, vector<int> a, vector<int> b) { int m = a.size(); // Returned solution has the property that every color component has a // distinct value. We use this for grouping. auto collapsed_colors = collapse::find_colors(n, m, a, b); grouping::n = n; for (int i = 0; i < n; i++) { grouping::proposed_colors.push_back(ACTUAL_COLOR); } grouping::nCollapsed = 0; unordered_map<int, int> remap; D("remapped:\n"); for (int i = 0; i < n; i++) { auto c = collapsed_colors[i]; if (remap.count(c) == 0) { remap[c] = grouping::nCollapsed; grouping::nCollapsed++; } grouping::groupOf[i] = remap[c]; grouping::members[remap[c]].push_back(i); D("%d ", remap[c]); } D("\n"); set<pii> edgesCollapsed; for (int u = 0; u < grouping::nCollapsed; u++) { for (auto uMember : grouping::members[u]) { for (auto vMember : collapse::adjlist[uMember]) { auto v = grouping::groupOf[vMember]; if (u != v && edgesCollapsed.count(make_pair(u, v)) == 0 && edgesCollapsed.count(make_pair(v, u)) == 0) { edgesCollapsed.insert(make_pair(u, v)); } } } } int mCollapsed = edgesCollapsed.size(); vector<int> aCollapsed; vector<int> bCollapsed; for (auto e : edgesCollapsed) { aCollapsed.push_back(e.first); bCollapsed.push_back(e.second); D("collapsed edge from %d to %d\n", e.first, e.second); } auto groupedColors = coloring::find_colors(grouping::nCollapsed, mCollapsed, aCollapsed, bCollapsed, n); /*D("grouped colors:\n"); for (auto g: groupedColors) { D("%d ", g); } D("\n");*/ vector<int> known_colors; for (int i = 0; i < n; i++) { known_colors.push_back(groupedColors[grouping::groupOf[i]]); } return known_colors; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...