Submission #1099858

# Submission time Handle Problem Language Result Execution time Memory
1099858 2024-10-12T05:38:11 Z model_code Hieroglyphs (IOI24_hieroglyphs) C++17
13 / 100
333 ms 20228 KB
// incorrect/felix-wa-wrong-candidate-2.cpp

#include "hieroglyphs.h"
#include<bits/stdc++.h>

using namespace std;

using vi = vector<int>;
using vvi = vector<vi>;

//erases non-common elements
void clean(vi& a, vi& b) {
    vi ap;
    vi bp;
    set<int> as;
    set<int> bs;
    for (int x : a) as.insert(x);
    for (int x : b) bs.insert(x);
    for (int x : a) if (bs.count(x)) ap.push_back(x);
    for (int x : b) if (as.count(x)) bp.push_back(x);
    swap(a, ap);
    swap(b, bp);
}

map<int, int> coordinate_compress(vi& a, vi& b) {
    int cc = 0;
    map<int, int> mp;
    map<int, int> rmp;
    for (int& x : a) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    for (int& x : b) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    return rmp;
}

bool is_subsequence(const vi& a, const vi& b) {
    int j = 0;
    for (int x : a) {
        if (j < (int)b.size() && b[j] == x) {
            j++;
        }
    }
    return j == (int)b.size();
}

vector<int> get_candidate(vector<int> a, vector<int> b) {
    int n = a.size();
    int m = b.size();

    vi occ_a(max(n, m)+1, 0);
    vi occ_b(max(n, m)+1, 0);
    for (int i=0; i < n; ++i) {
        occ_a[a[i]]++;
    }
    for (int i=0; i < m; ++i) {
        occ_b[b[i]]++;
    }

    //Extra
    vi occ_a_ori = occ_a;
    vi occ_b_ori = occ_b;

    vi c;
    vi cr;

    int afi = 0;
    int bfi = 0;
    int ali = n-1;
    int bli = m-1;

    while (afi <= ali && bfi <= bli) {
        bool wfa = occ_a[a[afi]] <= occ_b[a[afi]];
        bool wfb = occ_b[b[bfi]] <= occ_a[b[bfi]];
        bool wla = occ_a[a[ali]] <= occ_b[a[ali]];
        bool wlb = occ_b[b[bli]] <= occ_a[b[bli]];

        auto move_afi = [&] () {
            occ_a[a[afi]]--;
            afi++;
        };
        auto move_bfi = [&] () {
            occ_b[b[bfi]]--;
            bfi++;
        };
        auto move_ali = [&] () {
            occ_a[a[ali]]--;
            ali--;
        };
        auto move_bli = [&] () {
            occ_b[b[bli]]--;
            bli--;
        };

        //cerr << afi << " " << ali << "  " << bfi << " " << bli << "  " << wfa << wfb << wla << wlb << endl;
        if (a[afi] == b[bfi]) {
            c.push_back(a[afi]);
            move_afi();
            move_bfi();
        }
        else if (a[ali] == b[bli]) {
            cr.push_back(a[ali]);
            move_ali();
            move_bli();
        }
        else if (occ_b[a[afi]] == 0) move_afi();
        else if (occ_b[a[ali]] == 0) move_ali();
        else if (occ_a[b[bfi]] == 0) move_bfi();
        else if (occ_a[b[bli]] == 0) move_bli();
        else if (wfa && wfb && wla && wlb) {
            return {};
        }
        else if (wfa) {
            c.push_back(a[afi]);
            while (bfi <= bli && b[bfi] != a[afi]) {
                if (occ_b[b[bfi]] < occ_a[b[bfi]]) return {};
                move_bfi();
            }
            move_afi();
            move_bfi();
        }
        else if (wfb) {
            c.push_back(b[bfi]);
            while (afi <= ali && a[afi] != b[bfi]) {
                if (occ_a[a[afi]] < occ_b[a[afi]]) return {};
                move_afi();
            }
            move_afi();
            move_bfi();
        }
        else if (wla) {
            cr.push_back(a[ali]);
            while (bfi <= bli && b[bli] != a[ali]) {
                if (occ_b[b[bli]] < occ_a[b[bli]]) return {};
                move_bli();
            }
            move_ali();
            move_bli();
        }
        else if (wlb) {
            cr.push_back(b[bli]);
            while (afi <= ali && a[ali] != b[bli]) {
                if (occ_a[a[ali]] <= occ_b[a[ali]]) return {};
                move_ali();
            }
            move_ali();
            move_bli();
        }
        else {
            break;
        }
    }

    while (afi <= ali) {
        if (occ_a[a[afi]] < occ_b[a[afi]]) c.push_back(a[afi]);
        afi++;
    }
    while (bfi <= bli) {
        if (occ_b[b[bfi]] < occ_a[b[bfi]]) c.push_back(b[bfi]);
        bfi++;
    }

    while (!cr.empty()) {
        c.push_back(cr.back());
        cr.pop_back();
    }

    //EXTRA

    vi occ_c(max(n, m)+1, 0);
    for (int x : c) occ_c[x]++;
    for (int x : a) if (occ_c[x] != min(occ_a_ori[x], occ_b_ori[x])) return vi();


    return ((is_subsequence(a, c) && is_subsequence(b, c)) ? c : vi());
}




//returns v of size |b|
//v[i] = smallest index so that there exists a common subsequence of a[0..v[i]] and b[0..i] that is not
// a common subsequence of a[0..v[i]] and b[0..i-1]. if such index does not exist, v[i] = |a|
vector<int> index_vector(const vi& a, const vi& b) {
    int n = a.size();
    int m = b.size();
    vi v(m);
    int max_v = 0;
    for (int x : a) max_v = max(x, max_v);
    for (int x : b) max_v = max(x, max_v);
    vi prev_occ_b(max_v+1, -1);
    vvi a_occ(max_v+1);
    for (int i=0; i < n; ++i) {
        a_occ[a[i]].push_back(i);
    }
    for (int i=0; i <= max_v; ++i) {
        a_occ[i].push_back(n);
    }
    vector<pair<int, int>> min_stack;
    for (int i=0; i < m; ++i) {
        if (prev_occ_b[b[i]] == -1) {
            v[i] = a_occ[b[i]][0];
        }
        else {
            int min_val = lower_bound(min_stack.begin(), min_stack.end(), pair<int, int>(prev_occ_b[b[i]], -1))->second;
            if (min_val < n) v[i] = *lower_bound(a_occ[b[i]].begin(), a_occ[b[i]].end(), min_val+1);
            else v[i] = n;
        }
        while(!min_stack.empty() && min_stack.back().second >= v[i]) {
            min_stack.pop_back();
        }
        min_stack.emplace_back(i, v[i]);
        prev_occ_b[b[i]] = i;
    }
    return v; 
}

// RMQ template from KACTL
template<class T>
struct RMQ {
	vector<vector<T>> jmp;
	RMQ(const vector<T>& V) : jmp(1, V) {
		for (int pw = 1, k = 1; pw * 2 <= (int)V.size(); pw *= 2, ++k) {
			jmp.emplace_back((int)V.size() - pw * 2 + 1);
			for (int j=0; j < (int)jmp[k].size(); ++j)
				jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
		}
	}
	T query(int a, int b) {
		int dep = 31 - __builtin_clz(b - a);
		return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);
	}
};

bool no_single_crossing(const vi& a, const vi& b, const vi& c) {
    int n = a.size();
    int m = b.size();
    int l = c.size(); 

    vi rb = vi(b);
    reverse(rb.begin(), rb.end());

    vi rc = vi(c);
    reverse(rc.begin(), rc.end());

    vi v_ab = index_vector(a, b);
    vi v_rbc = index_vector(rb, rc);
    
    RMQ<int> v_rbc_rmq = RMQ<int>(v_rbc);

    vi v_max_rc_i(n+1);
    v_max_rc_i[n] = 0;
    for (int i=n-1; i >= 0; --i) {
        v_max_rc_i[i] = v_max_rc_i[i+1];
        if (a[i] == rc[v_max_rc_i[i+1]]) {
            v_max_rc_i[i]++;
        }
        if (v_max_rc_i[i] > l) v_max_rc_i[i] = l;
    }
    vi v_min_rc_i(m+1);
    v_min_rc_i[0] = l-1;
    for (int i=0; i < m; ++i) {
        v_min_rc_i[i+1] = v_min_rc_i[i];
        if (b[i] == rc[v_min_rc_i[i]]) {
            v_min_rc_i[i+1]--;
        }
        if (v_min_rc_i[i] < -1) v_min_rc_i[i] = -1;
    }

    for (int j=0; j < m; ++j) {
        int ai = v_ab[j];
        if (ai == n) continue;
        int min_rc_i = v_min_rc_i[j+1];
        int max_rc_i = v_max_rc_i[ai+1];
        if (min_rc_i+1 < max_rc_i && v_rbc_rmq.query(min_rc_i+1, max_rc_i) + j < m-1) return false;
    }
    return true;
}

bool verify(const vi& a, const vi& b, const vi& c) {
    if (c.empty()) return false;
    return no_single_crossing(a, b, c) && no_single_crossing(b, a, c);    
}

vector<int> ucs(vector<int> a, vector<int> b) {
    clean(a, b);
    if (a.empty() || b.empty()) {
		return vector<int>();
    }
    map<int, int> mp = coordinate_compress(a, b);
    vi c = get_candidate(a, b);
    if (verify(a, b, c)) {
        for (int& x : c) x = mp[x];

		return c;
    }
    return vector<int>({-1});
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 348 KB Output is correct
5 Correct 333 ms 20228 KB Output is correct
6 Correct 252 ms 13624 KB Output is correct
7 Correct 244 ms 14644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 2 ms 604 KB Output is correct
4 Correct 2 ms 348 KB Output is correct
5 Correct 333 ms 20228 KB Output is correct
6 Correct 252 ms 13624 KB Output is correct
7 Correct 244 ms 14644 KB Output is correct
8 Incorrect 157 ms 10168 KB Output isn't correct
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 69 ms 10740 KB Output is correct
2 Correct 67 ms 10884 KB Output is correct
3 Correct 48 ms 7004 KB Output is correct
4 Correct 50 ms 6872 KB Output is correct
5 Correct 64 ms 10104 KB Output is correct
6 Correct 21 ms 3728 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 80 ms 9632 KB Output is correct
17 Correct 18 ms 5188 KB Output is correct
18 Correct 31 ms 5400 KB Output is correct
19 Correct 22 ms 6152 KB Output is correct
20 Correct 49 ms 7844 KB Output is correct
21 Correct 22 ms 5036 KB Output is correct
22 Correct 14 ms 5188 KB Output is correct
23 Correct 14 ms 5040 KB Output is correct
24 Correct 14 ms 5184 KB Output is correct
25 Correct 13 ms 4164 KB Output is correct
26 Correct 14 ms 5188 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 157 ms 10168 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 2 ms 604 KB Output is correct
16 Correct 2 ms 604 KB Output is correct
17 Correct 2 ms 604 KB Output is correct
18 Correct 3 ms 604 KB Output is correct
19 Correct 3 ms 604 KB Output is correct
20 Correct 3 ms 760 KB Output is correct
21 Incorrect 2 ms 604 KB Output isn't correct
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 2 ms 604 KB Output is correct
7 Correct 2 ms 348 KB Output is correct
8 Correct 333 ms 20228 KB Output is correct
9 Correct 252 ms 13624 KB Output is correct
10 Correct 244 ms 14644 KB Output is correct
11 Incorrect 157 ms 10168 KB Output isn't correct
12 Halted 0 ms 0 KB -