Submission #1099857

# Submission time Handle Problem Language Result Execution time Memory
1099857 2024-10-12T05:37:59 Z model_code Hieroglyphs (IOI24_hieroglyphs) C++17
19 / 100
229 ms 15776 KB
// incorrect/felix-hasucs-plus-quadratic.cpp

#include "hieroglyphs.h"
#include<bits/stdc++.h>

using namespace std;

using vi = vector<int>;
using vvi = vector<vi>;

//erases non-common elements
void clean(vi& a, vi& b) {
    vi ap;
    vi bp;
    set<int> as;
    set<int> bs;
    for (int x : a) as.insert(x);
    for (int x : b) bs.insert(x);
    for (int x : a) if (bs.count(x)) ap.push_back(x);
    for (int x : b) if (as.count(x)) bp.push_back(x);
    swap(a, ap);
    swap(b, bp);
}

map<int, int> coordinate_compress(vi& a, vi& b) {
    int cc = 0;
    map<int, int> mp;
    map<int, int> rmp;
    for (int& x : a) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    for (int& x : b) {
        if (!mp.count(x)) {
            mp[x] = cc++;
            rmp[mp[x]] = x;
        }
        x = mp[x];
    }
    return rmp;
}

bool is_subsequence(const vi& a, const vi& b) {
    int j = 0;
    for (int x : a) {
        if (j < (int)b.size() && b[j] == x) {
            j++;
        }
    }
    return j == (int)b.size();
}

vector<int> get_candidate(vector<int> a, vector<int> b) {
    int n = a.size();
    int m = b.size();

    vi occ_a(max(n, m)+1, 0);
    vi occ_b(max(n, m)+1, 0);
    for (int i=0; i < n; ++i) {
        occ_a[a[i]]++;
    }
    for (int i=0; i < m; ++i) {
        occ_b[b[i]]++;
    }

    vi c;
    queue<int> qa;
    queue<int> qb;

    for (int i=0; i < n; ++i) {
        if (occ_a[a[i]] <= occ_b[a[i]]) {
            qa.push(i);
        }
    }
    for (int i=0; i < m; ++i) {
        if (occ_a[b[i]] > occ_b[b[i]]) {
            qb.push(i);
        }
    }

    int i_a_curr = 0;
    int i_b_curr = 0;
    int i_a_next = 0;
    int i_b_next = 0;
    vi occ_a_curr = vi(occ_a);
    vi occ_a_next = vi(occ_a);
    vi occ_b_curr = vi(occ_b);
    vi occ_b_next = vi(occ_b);

    while(!qa.empty() && !qb.empty()) {
        while(i_a_next < qa.front()) {
            occ_a_next[a[i_a_next]]--;
            i_a_next++;
        }
        while(i_b_next < qb.front()) {
            occ_b_next[b[i_b_next]]--;
            i_b_next++;
        }

        int x = a[i_a_next];
        int y = b[i_b_next];

        int occ_x = occ_a_next[x];
        int occ_y = occ_b_next[y];

        bool a_good = (occ_a_next[y] >= occ_y && occ_b_curr[x] > occ_b_next[x]);
        bool b_good = (occ_b_next[x] >= occ_x && occ_a_curr[y] > occ_a_next[y]);

        if (a_good && b_good) return vi();
        if (!a_good && !b_good) return vi();

        if(a_good) {
            c.push_back(x);
            qa.pop();
            while(i_a_curr <= i_a_next) {
                occ_a_curr[a[i_a_curr]]--;
                i_a_curr++;
            }
            while(b[i_b_curr] != x) {
                occ_b_curr[b[i_b_curr]]--;
                i_b_curr++;
            }
            occ_b_curr[b[i_b_curr]]--;
            i_b_curr++;
        }
        else {
            c.push_back(y);
            qb.pop();
            while(i_b_curr <= i_b_next) {
                occ_b_curr[b[i_b_curr]]--;
                i_b_curr++;
            }
            while(a[i_a_curr] != y) {
                occ_a_curr[a[i_a_curr]]--;
                i_a_curr++;
            }
            occ_a_curr[a[i_a_curr]]--;
            i_a_curr++;
        }
    }

    while(!qa.empty()) {
        c.push_back(a[qa.front()]);
        qa.pop();
    }
    while(!qb.empty()) {
        c.push_back(b[qb.front()]);
        qb.pop();
    }

    return ((is_subsequence(a, c) && is_subsequence(b, c)) ? c : vi());
}

vi lcs(const vi& a, const vi& b) {
	int n = a.size();
	int m = b.size();

	vvi dp(n+1, vi(m+1));
	for (int i=1; i <= n; ++i) {
		for (int j=1; j <= m; ++j) {
			dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
			if (a[i-1] == b[j-1]) dp[i][j] = max(dp[i][j], dp[i-1][j-1]+1);
		}
	}

	vi c;
	int ci = n;
	int cj = m;
	while (ci > 0 && cj > 0) {
		if (a[ci-1] == b[cj-1] && dp[ci][cj] == dp[ci-1][cj-1]+1) {
			c.push_back(a[ci-1]);
			ci--;
			cj--;
		}
		else {
			if (dp[ci][cj] == dp[ci-1][cj]) {
				ci--;
			}
			else {
				cj--;
			}
		}
	}

	reverse(c.begin(), c.end());
	return c;
}

vector<int> ucs_quad(vi a, vi b) {
	vi c = lcs(a, b);

	int n = a.size();
	int m = b.size();
	int l = c.size();

	vvi nxt(max(n, m)+1, vi(l+2, l)); //nxt[x][i] = first k such that c[k] = x and k >= i, l if such k does not exist

	for (int i=0; i < l; ++i) {
		for (int j=0; j <= i; ++j) {
			nxt[c[i]][j] = min(nxt[c[i]][j], i);
		}
	}

	vvi dp(n+1, vi(m+1, -1)); //dp[i][j] = maximum k so that there is a common subseq of a[0..i), b[0..j) which is not a subseq of c[0..k), -1 if no subseq

	for (int i=1; i <= n; ++i) {
		for (int j=1; j <= m; ++j) {
			if (a[i-1] == b[j-1]) {
				dp[i][j] = nxt[a[i-1]][dp[i-1][j-1]+1];
			}
			dp[i][j] = max(dp[i][j], max(dp[i-1][j], dp[i][j-1]));
		}
	}

	if(dp[n][m] == l) return vector<int>({-1});
	return c;
}

vector<int> ucs(vector<int> a, vector<int> b) {
    clean(a, b);
    if (a.empty() || b.empty()) {
		return vector<int>();
    }
    map<int, int> mp = coordinate_compress(a, b);
    vi c;
    if ((int)a.size() <= 500 && (int)b.size() <= 500) c = ucs_quad(a, b);
    else c = get_candidate(a, b);
    if (c.empty() || c[0] == -1) return {-1};
    for (int& x : c) x = mp[x];
    return c;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 229 ms 15608 KB Output is correct
6 Correct 217 ms 15776 KB Output is correct
7 Correct 206 ms 15676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 229 ms 15608 KB Output is correct
6 Correct 217 ms 15776 KB Output is correct
7 Correct 206 ms 15676 KB Output is correct
8 Correct 154 ms 10900 KB Output is correct
9 Correct 156 ms 10860 KB Output is correct
10 Correct 172 ms 10924 KB Output is correct
11 Correct 161 ms 10928 KB Output is correct
12 Correct 152 ms 10880 KB Output is correct
13 Correct 147 ms 10796 KB Output is correct
14 Correct 152 ms 10876 KB Output is correct
15 Correct 181 ms 10900 KB Output is correct
16 Correct 177 ms 10844 KB Output is correct
17 Correct 169 ms 10840 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 2 ms 1388 KB Output is correct
21 Correct 3 ms 604 KB Output is correct
22 Correct 81 ms 6328 KB Output is correct
23 Correct 134 ms 10300 KB Output is correct
24 Correct 154 ms 10260 KB Output is correct
25 Correct 133 ms 10220 KB Output is correct
26 Correct 88 ms 6480 KB Output is correct
27 Correct 173 ms 10916 KB Output is correct
28 Correct 172 ms 10920 KB Output is correct
29 Incorrect 185 ms 10884 KB Output isn't correct
30 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 29 ms 6212 KB Output is correct
2 Correct 34 ms 6240 KB Output is correct
3 Correct 25 ms 5700 KB Output is correct
4 Correct 22 ms 5484 KB Output is correct
5 Correct 27 ms 6252 KB Output is correct
6 Correct 14 ms 4240 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 47 ms 6204 KB Output is correct
17 Correct 19 ms 5556 KB Output is correct
18 Correct 18 ms 5128 KB Output is correct
19 Correct 14 ms 4872 KB Output is correct
20 Correct 25 ms 5788 KB Output is correct
21 Correct 16 ms 5048 KB Output is correct
22 Correct 15 ms 5444 KB Output is correct
23 Incorrect 24 ms 6324 KB Output isn't correct
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 154 ms 10900 KB Output is correct
2 Correct 156 ms 10860 KB Output is correct
3 Correct 172 ms 10924 KB Output is correct
4 Correct 161 ms 10928 KB Output is correct
5 Correct 152 ms 10880 KB Output is correct
6 Correct 147 ms 10796 KB Output is correct
7 Correct 152 ms 10876 KB Output is correct
8 Correct 181 ms 10900 KB Output is correct
9 Correct 177 ms 10844 KB Output is correct
10 Correct 169 ms 10840 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 2 ms 1388 KB Output is correct
14 Correct 3 ms 604 KB Output is correct
15 Correct 81 ms 6328 KB Output is correct
16 Correct 134 ms 10300 KB Output is correct
17 Correct 154 ms 10260 KB Output is correct
18 Correct 133 ms 10220 KB Output is correct
19 Correct 88 ms 6480 KB Output is correct
20 Correct 29 ms 6212 KB Output is correct
21 Correct 34 ms 6240 KB Output is correct
22 Correct 25 ms 5700 KB Output is correct
23 Correct 22 ms 5484 KB Output is correct
24 Correct 27 ms 6252 KB Output is correct
25 Correct 14 ms 4240 KB Output is correct
26 Correct 1 ms 348 KB Output is correct
27 Correct 1 ms 584 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 2 ms 348 KB Output is correct
30 Correct 2 ms 348 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 3 ms 604 KB Output is correct
33 Correct 3 ms 604 KB Output is correct
34 Correct 13 ms 1884 KB Output is correct
35 Correct 26 ms 6004 KB Output is correct
36 Correct 42 ms 6728 KB Output is correct
37 Correct 58 ms 6464 KB Output is correct
38 Correct 28 ms 6216 KB Output is correct
39 Correct 28 ms 6212 KB Output is correct
40 Correct 188 ms 9496 KB Output is correct
41 Correct 79 ms 7320 KB Output is correct
42 Correct 20 ms 4928 KB Output is correct
43 Correct 39 ms 5032 KB Output is correct
44 Correct 21 ms 4932 KB Output is correct
45 Correct 20 ms 4548 KB Output is correct
46 Correct 109 ms 8656 KB Output is correct
47 Correct 109 ms 8408 KB Output is correct
48 Correct 113 ms 8404 KB Output is correct
49 Correct 129 ms 8356 KB Output is correct
50 Correct 120 ms 8320 KB Output is correct
51 Correct 115 ms 8280 KB Output is correct
52 Correct 118 ms 7596 KB Output is correct
53 Correct 110 ms 7820 KB Output is correct
54 Correct 100 ms 7604 KB Output is correct
55 Correct 16 ms 2384 KB Output is correct
56 Correct 39 ms 6376 KB Output is correct
57 Correct 42 ms 5776 KB Output is correct
58 Correct 48 ms 6436 KB Output is correct
59 Correct 81 ms 6720 KB Output is correct
60 Correct 112 ms 7232 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 0 ms 348 KB Output is correct
9 Correct 0 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 584 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 2 ms 348 KB Output is correct
14 Correct 2 ms 348 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 3 ms 604 KB Output is correct
17 Correct 3 ms 604 KB Output is correct
18 Correct 3 ms 652 KB Output is correct
19 Correct 2 ms 572 KB Output is correct
20 Correct 3 ms 604 KB Output is correct
21 Correct 4 ms 752 KB Output is correct
22 Incorrect 2 ms 604 KB Output isn't correct
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 229 ms 15608 KB Output is correct
9 Correct 217 ms 15776 KB Output is correct
10 Correct 206 ms 15676 KB Output is correct
11 Correct 154 ms 10900 KB Output is correct
12 Correct 156 ms 10860 KB Output is correct
13 Correct 172 ms 10924 KB Output is correct
14 Correct 161 ms 10928 KB Output is correct
15 Correct 152 ms 10880 KB Output is correct
16 Correct 147 ms 10796 KB Output is correct
17 Correct 152 ms 10876 KB Output is correct
18 Correct 181 ms 10900 KB Output is correct
19 Correct 177 ms 10844 KB Output is correct
20 Correct 169 ms 10840 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 2 ms 1388 KB Output is correct
24 Correct 3 ms 604 KB Output is correct
25 Correct 81 ms 6328 KB Output is correct
26 Correct 134 ms 10300 KB Output is correct
27 Correct 154 ms 10260 KB Output is correct
28 Correct 133 ms 10220 KB Output is correct
29 Correct 88 ms 6480 KB Output is correct
30 Correct 173 ms 10916 KB Output is correct
31 Correct 172 ms 10920 KB Output is correct
32 Incorrect 185 ms 10884 KB Output isn't correct
33 Halted 0 ms 0 KB -