#include <bits/stdc++.h>
using namespace std;
/**
* Author: Simon Lindholm
* Date: 2017-04-20
* License: CC0
* Source: own work
* Description: Container where you can add lines of the form kx+m, and query maximum values at points x.
* Useful for dynamic programming (``convex hull trick'').
* Time: O(\log N)
* Status: stress-tested
*/
typedef long long ll;
struct Line {
mutable ll k, m, p;
bool operator<(const Line& o) const { return k < o.k; }
bool operator<(ll x) const { return p < x; }
};
struct LineContainer : multiset<Line, less<>> {
// (for doubles, use inf = 1/.0, div(a,b) = a/b)
static const ll inf = LLONG_MAX;
ll div(ll a, ll b) { // floored division
return a / b - ((a ^ b) < 0 && a % b); }
bool isect(iterator x, iterator y) {
if (y == end()) return x->p = inf, 0;
if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
else x->p = div(y->m - x->m, x->k - y->k);
return x->p >= y->p;
}
void add(ll k, ll m) {
auto z = insert({k, m, 0}), y = z++, x = y;
while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p)
isect(x, erase(y));
}
ll query(ll x) {
assert(!empty());
auto l = *lower_bound(x);
return l.k * x + l.m;
}
};
const int N = (int)1e5 + 10;
int h[N];
ll s[N], f[N];
LineContainer L;
void add(int i) {
L.add(2LL * h[i], -f[i] - (ll)h[i] * h[i] + s[i]);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
for(int i = 1; i <= n; ++i)
cin >> h[i];
for(int i = 1; i <= n; ++i) {
cin >> s[i];
s[i] += s[i - 1];
}
f[1] = 0;
add(1);
for(int i = 2; i <= n; ++i) {
f[i] = -L.query(h[i]) + (ll)h[i] * h[i] + s[i - 1];
add(i);
}
cout << f[n];
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
504 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
32 ms |
3412 KB |
Output is correct |
2 |
Correct |
30 ms |
3420 KB |
Output is correct |
3 |
Correct |
29 ms |
3420 KB |
Output is correct |
4 |
Correct |
28 ms |
3152 KB |
Output is correct |
5 |
Correct |
25 ms |
4444 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
1 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
504 KB |
Output is correct |
6 |
Correct |
32 ms |
3412 KB |
Output is correct |
7 |
Correct |
30 ms |
3420 KB |
Output is correct |
8 |
Correct |
29 ms |
3420 KB |
Output is correct |
9 |
Correct |
28 ms |
3152 KB |
Output is correct |
10 |
Correct |
25 ms |
4444 KB |
Output is correct |
11 |
Correct |
26 ms |
3420 KB |
Output is correct |
12 |
Correct |
29 ms |
3412 KB |
Output is correct |
13 |
Correct |
22 ms |
3404 KB |
Output is correct |
14 |
Correct |
29 ms |
3584 KB |
Output is correct |
15 |
Correct |
43 ms |
9476 KB |
Output is correct |
16 |
Correct |
25 ms |
4436 KB |
Output is correct |
17 |
Correct |
14 ms |
3416 KB |
Output is correct |
18 |
Correct |
14 ms |
3420 KB |
Output is correct |