#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cassert>
#include <vector>
typedef long long ll;
typedef long double ld;
//typedef double ld;
typedef std::vector<int> Vint;
const ld INF = 1e17;
const ld TOL = 1e-6;
const ld PI = acos(-1);
const int LEN = 25;
inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; }
inline bool zero(const ld& x) { return !sign(x); }
inline ll sq(ll x) { return x * x; }
inline ld sq(ld x) { return x * x; }
inline ld norm(ld th) {
while (th < 0) th += 2 * PI;
while (sign(th - 2 * PI) >= 0) th -= 2 * PI;
return th;
}
#define START 1
#define CROSS 2
#define END 3
#define HI 0
#define LO 1
int N, M, T, Q;
int I[LEN][LEN][2];
bool IN[LEN][LEN];
ld ANS;
struct Pos {
ld x, y;
Pos(ld X = 0, ld Y = 0) : x(X), y(Y) {}
bool operator == (const Pos& p) const { return zero(x - p.x) && zero(y - p.y); }
bool operator < (const Pos& p) const { return zero(x - p.x) ? y < p.y : x < p.x; }
Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; }
Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; }
Pos operator * (const ld& n) const { return { x * n, y * n }; }
Pos operator / (const ld& n) const { return { x / n, y / n }; }
ld operator * (const Pos& p) const { return x * p.x + y * p.y; }
ld operator / (const Pos& p) const { return x * p.y - y * p.x; }
Pos rot(ld the) const { return { x * cos(the) - y * sin(the), x * sin(the) + y * cos(the) }; }
ld Euc() const { return x * x + y * y; }
ld mag() const { return sqrt(Euc()); }
ld rad() const { return atan2(y, x); }
}; const Pos O = { 0, 0 };
typedef std::vector<Pos> Polygon;
ld cross(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) / (d4 - d3); }
Polygon intersection(const Pos& ca, const ld& ra, const Pos& cb, const ld& rb) {
Pos vec = cb - ca;
ld distance = vec.mag();
ld rd = vec.rad();
if (vec.Euc() > sq(ra + rb) + TOL) return {};
if (vec.Euc() < sq(ra - rb) - TOL) return {};
ld X = (ra * ra - rb * rb + vec.Euc()) / (2 * distance * ra);
if (X < -1) X = -1;
if (X > 1) X = 1;
ld h = acos(X);
Polygon ret;
ret.push_back(ca + Pos(ra, 0).rot(norm(rd + h)));
if (zero(h)) return ret;
ret.push_back(ca + Pos(ra, 0).rot(norm(rd - h)));
return ret;
}
struct Pii {
int s, e;
Pii(int s_ = 0, int e_ = 0) : s(s_), e(e_) {}
};
struct Pow {
int s, w;
Pow(int s_, int w_) : s(s_), w(w_) {}
bool operator < (const Pow& p) const { return s == p.s ? w > p.w : s > p.s; }
};
struct Station {
int x, y;
int M, L, U;
Vint r, s, w;
Station(int x0 = 0, int y0 = 0, int m0 = 0, int l0 = 0, int u0 = 0)
: x(x0), y(y0), M(m0), L(l0), U(u0) { r.clear(); s.clear(); w.clear(); }
Pos p() const { return Pos(x, y); }
} S[LEN];
struct Event {
int t;//type
ld x;
int ai, aj, ad;
int bi, bj, bd;
bool operator < (const Event& e) const {
if (zero(x - e.x)) {
return t == e.t ? S[ai].r[aj] > S[e.ai].r[e.aj] : t < e.t;
}
return x < e.x;
}
} E;
std::vector<Event> VE;
struct Signal {
int i, j, d;
ld x;
bool operator < (const Signal& s) const { return i < s.i; }
} SG[LEN * LEN * LEN];
struct Prob {
ld p;
int i, s;
bool operator < (const Prob& o) const { return s > o.s; }
};
ld prob[LEN];
bool intersection(const int& ai, const int& aj, const int& bi, const int& bj, Polygon& inx) {
if (S[ai].p() == S[bi].p()) return 0;
ll x = S[ai].x - S[bi].x;
ll y = S[ai].y - S[bi].y;
ll d = x * x + y * y;
ll ro = S[ai].r[aj] + S[bi].r[bj];
ll ri = S[ai].r[aj] - S[bi].r[bj];
if (d >= sq(ro) || d <= sq(ri)) return 0;
inx = intersection(S[ai].p(), S[ai].r[aj], S[bi].p(), S[ bi].r[bj]);
assert(inx.size() == 2);
return 1;
}
ld get_y(const Signal& s, const ld& x) {
Pos p = S[s.i].p();
ld r = S[s.i].r[s.j];
if ((p.x - r) < x && x < (p.x + r)) {
ld dy = sqrt(r * r - sq(p.x - x));
return p.y + dy * (s.d == HI ? 1 : -1);
}
return p.y;
}
ld green(const Signal& sg, const ld& sx, const ld& ex) {
ld r = S[sg.i].r[sg.j];
ld sy = get_y(sg, sx);
ld ey = get_y(sg, ex);
int f = sg.d == HI ? 1 : -1;
Pos c = S[sg.i].p();
Pos s = Pos(sx, sy);
Pos e = Pos(ex, ey);
ld st = norm((s - c).rad());
ld et = norm((e - c).rad());
ld t = norm((st - et) * f);
ld fan = r * r * (t - sin(t)) * .5;
//ld fan = r * r * (t * .5 - cos(t * .5) * sin(t * .5));
ld rec = (ex - sx) * (sy + ey) * .5;
return fan * f + rec;
}
void sweep(const int& k, const ld& x) {
if (k < 0 || T <= k + 1) return;
if (zero(SG[k].x - x)) return;
int sz;
Signal hi = SG[k + 1];
Signal lo = SG[k];
ld ha = green(hi, SG[k].x, x);
ld la = green(lo, SG[k].x, x);
ld A = ha - la;
if (zero(A)) return;
ld mx = (x + SG[k].x) * .5;
ld my = (get_y(hi, mx) + get_y(lo, mx)) * .5;
Pos m = Pos(mx, my);
for (int i = 0; i < N; i++) {
Pos v = S[i].p() - m;
for (int j = 0; j < S[i].M; j++) {
ll r = S[i].r[j];
IN[i][j] = sign(r * r - v.Euc()) >= 0;
}
}
std::vector<Prob> P;
Prob p;
for (int i = 0; i < N; i++) {
prob[i] = 1.;
int all = S[i].U - S[i].L + 1;
int L = S[i].L;
int U = S[i].U;
std::vector<Pow> V;
for (int j = 0; j < S[i].M; j++)
if (IN[i][j]) V.push_back(Pow(S[i].s[j], S[i].w[j]));
std::sort(V.begin(), V.end());
sz = V.size();
for (int j = 0; j < sz; j++) {
int s = V[j].s;
int w = V[j].w;
if (w < L) w = L;
int diff = U - w + 1;
if (diff > 0) {
U = w - 1;
p.p = (ld)diff / all;
p.i = i;
p.s = s;
P.push_back(p);
}
}
}
std::sort(P.begin(), P.end());
ld per = 1.;
ld total = 0;
sz = P.size();
for (int i = 0; i < sz; i++) {
p = P[i];
total += p.s * per * p.p / prob[p.i];
per = per / prob[p.i];
prob[p.i] -= p.p;
per = per * prob[p.i];
}
SG[k].x = x;
ANS += total * A;
return;
}
void sweep_signal(const int& k, const ld& x) {
sweep(k, x);
if (0 <= k && k < T) SG[k].x = x;
return;
}
void solve() {
T = 0;
int sz = VE.size();
for (int i = 0; i < sz; i++) {
E = VE[i];
if (E.t == START) {
int k = 0;
Signal s;
for (k = 0; k < T; k++) {
s = SG[k];
ld y = get_y(s, E.x);
if (sign(y - S[E.ai].y) > 0 || (zero(y - S[E.ai].y) && SG[k].d == HI))
break;
}
sweep_signal(k - 1, E.x);
for (int j = T + 1; j > k + 1; j--) SG[j] = SG[j - 2];
s.i = E.ai;
s.j = E.aj;
s.x = E.x;
s.d = LO; SG[k] = s;
s.d = HI; SG[k + 1] = s;
T += 2;
}
else if (E.t == END) {
int ui = I[E.ai][E.aj][HI];
int di = I[E.ai][E.aj][LO];
sweep_signal(ui - 1, E.x);
sweep_signal(ui, E.x);
sweep_signal(di - 1, E.x);
sweep_signal(di, E.x);
int T_ = T;
T = 0;
for (int j = 0; j < T_; j++) {
if (j == ui || j == di) continue;
SG[T] = SG[j];
T++;
}
}
else if (E.t == CROSS) {
int PLUS = -1;
Vint VI;
ld nxt = E.x;
for (int j = i; j < sz; j++) {
const Event& NE = VE[j];
if (!zero(E.x - NE.x)) { nxt = NE.x; break; }
if (NE.t != CROSS) continue;
PLUS++;
}
for (int j = 0; j < T - 1; j++) {
if (zero(get_y(SG[j], E.x) - get_y(SG[j + 1], E.x))) {
VI.push_back(j);
VI.push_back(j + 1);
}
}
std::sort(VI.begin(), VI.end());
VI.erase(unique(VI.begin(), VI.end()), VI.end());
int szi = VI.size();
int ss = -1, ee = -1;
std::vector<Pii> rev;
for (int j = 0; j <= szi; j++) {
int k = -1;
if (j < szi) {
k = VI[j];
sweep_signal(k - 1, E.x);
sweep_signal(k, E.x);
}
if (ss == -1) ss = ee = k;
else {
if (k != -1 && zero(get_y(SG[ss], E.x) - get_y(SG[k], E.x))) { ee = k; }
else {
if (ss != -1) { rev.push_back(Pii(ss, ee)); }
ss = ee = k;
}
}
}
ld mx = (E.x + nxt) * .5;
int szr = rev.size();
for (int j = 0; j < szr; j++) {
int s = rev[j].s;
int e = rev[j].e;
std::vector<std::pair<ld, Signal>> VS;
for (int k = s; k <= e; k++) {
SG[k].x = E.x;
VS.push_back(std::make_pair(get_y(SG[k], mx), SG[k]));
}
std::sort(VS.begin(), VS.end());
for (int k = s; k <= e; k++) SG[k] = VS[k - s].second;
}
i += PLUS;
}
for (int j = 0; j < T; j++) {
const Signal& s = SG[j];
I[s.i][s.j][s.d] = j;
}
}
return;
}
void init() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout.tie(0);
std::cout << std::fixed;
std::cout.precision(9);
ANS = 0;
std::cin >> N;
for (int i = 0; i < N; i++) {
E.ai = i;
std::cin >> S[i].x >> S[i].y >> S[i].M >> S[i].L >> S[i].U;
M = S[i].M;
S[i].r.resize(M);
S[i].s.resize(M);
S[i].w.resize(M);
for (int j = 0; j < M; j++) {
E.aj = j;
std::cin >> S[i].r[j] >> S[i].s[j] >> S[i].w[j];
E.x = S[i].x - S[i].r[j];
E.t = START;
VE.push_back(E);
E.x = S[i].x + S[i].r[j];
E.t = END;
VE.push_back(E);
for (int k = 0; k < i; k++) {
if (S[i].p() == S[k].p()) continue;
for (int m = 0; m < S[k].M; m++) {
Polygon inx;
if (intersection(i, j, k, m, inx)) {
for (const Pos& p : inx) {
E.x = p.x;
E.t = CROSS;
VE.push_back(E);
}
}
}
}
}
}
std::sort(VE.begin(), VE.end());
return;
}
int main() { init(); solve(); std::cout << ANS << "\n"; return 0; }
//refer to ekzm0204
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
348 KB |
Output is correct |
2 |
Correct |
0 ms |
348 KB |
Output is correct |
3 |
Correct |
0 ms |
348 KB |
Output is correct |
4 |
Correct |
0 ms |
348 KB |
Output is correct |
5 |
Correct |
0 ms |
348 KB |
Output is correct |
6 |
Correct |
0 ms |
348 KB |
Output is correct |
7 |
Correct |
0 ms |
464 KB |
Output is correct |
8 |
Correct |
1 ms |
348 KB |
Output is correct |
9 |
Correct |
2 ms |
604 KB |
Output is correct |
10 |
Correct |
1 ms |
348 KB |
Output is correct |
11 |
Correct |
1 ms |
348 KB |
Output is correct |
12 |
Correct |
1 ms |
348 KB |
Output is correct |
13 |
Correct |
1 ms |
344 KB |
Output is correct |
14 |
Correct |
2 ms |
344 KB |
Output is correct |
15 |
Correct |
1 ms |
352 KB |
Output is correct |
16 |
Correct |
1 ms |
348 KB |
Output is correct |
17 |
Correct |
1 ms |
348 KB |
Output is correct |
18 |
Correct |
1 ms |
472 KB |
Output is correct |
19 |
Correct |
1 ms |
348 KB |
Output is correct |
20 |
Correct |
1 ms |
500 KB |
Output is correct |
21 |
Correct |
1 ms |
348 KB |
Output is correct |
22 |
Correct |
1 ms |
348 KB |
Output is correct |
23 |
Correct |
1 ms |
348 KB |
Output is correct |
24 |
Correct |
1 ms |
348 KB |
Output is correct |
25 |
Correct |
1 ms |
348 KB |
Output is correct |
26 |
Correct |
1 ms |
348 KB |
Output is correct |
27 |
Correct |
1 ms |
348 KB |
Output is correct |
28 |
Correct |
1 ms |
348 KB |
Output is correct |
29 |
Correct |
1 ms |
344 KB |
Output is correct |
30 |
Correct |
1 ms |
348 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
348 KB |
Output is correct |
2 |
Correct |
7 ms |
592 KB |
Output is correct |
3 |
Correct |
6 ms |
348 KB |
Output is correct |
4 |
Correct |
2609 ms |
1016 KB |
Output is correct |
5 |
Correct |
3 ms |
604 KB |
Output is correct |
6 |
Correct |
52 ms |
992 KB |
Output is correct |
7 |
Incorrect |
478 ms |
6356 KB |
Output isn't correct |
8 |
Halted |
0 ms |
0 KB |
- |