Submission #1093618

# Submission time Handle Problem Language Result Execution time Memory
1093618 2024-09-27T06:52:59 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
295 ms 25916 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    vector<int> vc;
    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            vc.emplace_back(res[i] ? -1 : -2);
        }
        else if (tpq[i] == 2) {
            vc.emplace_back(res[i]);
        }
    }
    
    for (auto val : vc) {
        if (val == -1) {
            cout << "yes\n";
        }
        else if (val == -2) {
            cout << "no\n";
        }
        else {
            cout << val << "\n";
        }
    }
}

signed main() {

// #ifndef CDuongg
//     if (fopen(taskname".inp", "r"))
//         assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
// #else
//     freopen("bai3.inp", "r", stdin);
//     freopen("bai3.out", "w", stdout);
//     auto start = chrono::high_resolution_clock::now();
// #endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

// #ifdef CDuongg
//    auto end = chrono::high_resolution_clock::now();
//    cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
//    cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
// #endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4820 KB Output is correct
2 Correct 23 ms 5576 KB Output is correct
3 Correct 21 ms 5344 KB Output is correct
4 Correct 23 ms 5588 KB Output is correct
5 Correct 29 ms 5864 KB Output is correct
6 Correct 24 ms 5576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4820 KB Output is correct
2 Correct 23 ms 5576 KB Output is correct
3 Correct 21 ms 5344 KB Output is correct
4 Correct 23 ms 5588 KB Output is correct
5 Correct 29 ms 5864 KB Output is correct
6 Correct 24 ms 5576 KB Output is correct
7 Correct 16 ms 4820 KB Output is correct
8 Incorrect 27 ms 5592 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 14 ms 4816 KB Output is correct
2 Correct 94 ms 20456 KB Output is correct
3 Correct 110 ms 20212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 4816 KB Output is correct
2 Correct 94 ms 20456 KB Output is correct
3 Correct 110 ms 20212 KB Output is correct
4 Correct 14 ms 4736 KB Output is correct
5 Correct 79 ms 20348 KB Output is correct
6 Correct 59 ms 19504 KB Output is correct
7 Correct 60 ms 19228 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 4820 KB Output is correct
2 Correct 204 ms 25144 KB Output is correct
3 Correct 197 ms 25352 KB Output is correct
4 Correct 152 ms 25864 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 4820 KB Output is correct
2 Correct 204 ms 25144 KB Output is correct
3 Correct 197 ms 25352 KB Output is correct
4 Correct 152 ms 25864 KB Output is correct
5 Correct 15 ms 4816 KB Output is correct
6 Correct 194 ms 25096 KB Output is correct
7 Correct 170 ms 25864 KB Output is correct
8 Correct 214 ms 25096 KB Output is correct
9 Correct 197 ms 25224 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4836 KB Output is correct
2 Correct 154 ms 19460 KB Output is correct
3 Correct 142 ms 18920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 4836 KB Output is correct
2 Correct 154 ms 19460 KB Output is correct
3 Correct 142 ms 18920 KB Output is correct
4 Correct 15 ms 4816 KB Output is correct
5 Correct 160 ms 19424 KB Output is correct
6 Correct 156 ms 18952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 4872 KB Output is correct
2 Correct 212 ms 25212 KB Output is correct
3 Correct 195 ms 25348 KB Output is correct
4 Correct 156 ms 25916 KB Output is correct
5 Correct 14 ms 4820 KB Output is correct
6 Correct 142 ms 19416 KB Output is correct
7 Correct 141 ms 18948 KB Output is correct
8 Correct 138 ms 19460 KB Output is correct
9 Correct 147 ms 19460 KB Output is correct
10 Correct 255 ms 22532 KB Output is correct
11 Correct 243 ms 22364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 4872 KB Output is correct
2 Correct 212 ms 25212 KB Output is correct
3 Correct 195 ms 25348 KB Output is correct
4 Correct 156 ms 25916 KB Output is correct
5 Correct 14 ms 4820 KB Output is correct
6 Correct 142 ms 19416 KB Output is correct
7 Correct 141 ms 18948 KB Output is correct
8 Correct 138 ms 19460 KB Output is correct
9 Correct 147 ms 19460 KB Output is correct
10 Correct 255 ms 22532 KB Output is correct
11 Correct 243 ms 22364 KB Output is correct
12 Correct 16 ms 4816 KB Output is correct
13 Correct 203 ms 25092 KB Output is correct
14 Correct 181 ms 25860 KB Output is correct
15 Correct 192 ms 25148 KB Output is correct
16 Correct 194 ms 25092 KB Output is correct
17 Correct 17 ms 4820 KB Output is correct
18 Correct 158 ms 19464 KB Output is correct
19 Correct 147 ms 18984 KB Output is correct
20 Correct 145 ms 19504 KB Output is correct
21 Correct 157 ms 19464 KB Output is correct
22 Correct 263 ms 22280 KB Output is correct
23 Correct 295 ms 22640 KB Output is correct
24 Correct 279 ms 22432 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4816 KB Output is correct
2 Correct 25 ms 5588 KB Output is correct
3 Correct 40 ms 5312 KB Output is correct
4 Correct 24 ms 5708 KB Output is correct
5 Correct 26 ms 5836 KB Output is correct
6 Correct 22 ms 5692 KB Output is correct
7 Correct 15 ms 4816 KB Output is correct
8 Correct 90 ms 20352 KB Output is correct
9 Correct 130 ms 20300 KB Output is correct
10 Correct 23 ms 4816 KB Output is correct
11 Correct 222 ms 25348 KB Output is correct
12 Correct 222 ms 25216 KB Output is correct
13 Correct 177 ms 25824 KB Output is correct
14 Correct 28 ms 4792 KB Output is correct
15 Correct 170 ms 19424 KB Output is correct
16 Correct 201 ms 18852 KB Output is correct
17 Correct 161 ms 19464 KB Output is correct
18 Correct 161 ms 19300 KB Output is correct
19 Correct 253 ms 22492 KB Output is correct
20 Correct 267 ms 22300 KB Output is correct
21 Correct 106 ms 20232 KB Output is correct
22 Correct 132 ms 19976 KB Output is correct
23 Correct 146 ms 19720 KB Output is correct
24 Correct 157 ms 19652 KB Output is correct
25 Correct 218 ms 22744 KB Output is correct
26 Correct 155 ms 18704 KB Output is correct
27 Correct 162 ms 18852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4816 KB Output is correct
2 Correct 25 ms 5588 KB Output is correct
3 Correct 40 ms 5312 KB Output is correct
4 Correct 24 ms 5708 KB Output is correct
5 Correct 26 ms 5836 KB Output is correct
6 Correct 22 ms 5692 KB Output is correct
7 Correct 15 ms 4816 KB Output is correct
8 Correct 90 ms 20352 KB Output is correct
9 Correct 130 ms 20300 KB Output is correct
10 Correct 23 ms 4816 KB Output is correct
11 Correct 222 ms 25348 KB Output is correct
12 Correct 222 ms 25216 KB Output is correct
13 Correct 177 ms 25824 KB Output is correct
14 Correct 28 ms 4792 KB Output is correct
15 Correct 170 ms 19424 KB Output is correct
16 Correct 201 ms 18852 KB Output is correct
17 Correct 161 ms 19464 KB Output is correct
18 Correct 161 ms 19300 KB Output is correct
19 Correct 253 ms 22492 KB Output is correct
20 Correct 267 ms 22300 KB Output is correct
21 Correct 106 ms 20232 KB Output is correct
22 Correct 132 ms 19976 KB Output is correct
23 Correct 146 ms 19720 KB Output is correct
24 Correct 157 ms 19652 KB Output is correct
25 Correct 218 ms 22744 KB Output is correct
26 Correct 155 ms 18704 KB Output is correct
27 Correct 162 ms 18852 KB Output is correct
28 Correct 27 ms 4812 KB Output is correct
29 Incorrect 28 ms 5584 KB Extra information in the output file
30 Halted 0 ms 0 KB -