Submission #1093613

# Submission time Handle Problem Language Result Execution time Memory
1093613 2024-09-27T06:48:02 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
291 ms 28680 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    int cntq = 0;
    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            ++cntq;
            cout << (res[i] ? "yes" : "no") << "\n";
        }
        else if (tpq[i] == 2)   {
            ++cntq;
            cout << res[i] << "\n";
        }
    }
    assert(cntq == q);
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 24 ms 6484 KB Output is correct
3 Correct 22 ms 5972 KB Output is correct
4 Correct 25 ms 6484 KB Output is correct
5 Correct 24 ms 6680 KB Output is correct
6 Correct 24 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 24 ms 6484 KB Output is correct
3 Correct 22 ms 5972 KB Output is correct
4 Correct 25 ms 6484 KB Output is correct
5 Correct 24 ms 6680 KB Output is correct
6 Correct 24 ms 6492 KB Output is correct
7 Correct 19 ms 5208 KB Output is correct
8 Incorrect 26 ms 5976 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 5468 KB Output is correct
2 Correct 95 ms 23068 KB Output is correct
3 Correct 94 ms 23168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 5468 KB Output is correct
2 Correct 95 ms 23068 KB Output is correct
3 Correct 94 ms 23168 KB Output is correct
4 Correct 17 ms 5212 KB Output is correct
5 Correct 92 ms 23000 KB Output is correct
6 Correct 67 ms 21216 KB Output is correct
7 Correct 66 ms 21376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 195 ms 27652 KB Output is correct
3 Correct 198 ms 27656 KB Output is correct
4 Correct 157 ms 28676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 195 ms 27652 KB Output is correct
3 Correct 198 ms 27656 KB Output is correct
4 Correct 157 ms 28676 KB Output is correct
5 Correct 16 ms 5212 KB Output is correct
6 Correct 208 ms 27144 KB Output is correct
7 Correct 174 ms 28420 KB Output is correct
8 Correct 196 ms 26888 KB Output is correct
9 Correct 209 ms 26628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 156 ms 22312 KB Output is correct
3 Correct 144 ms 21260 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 156 ms 22312 KB Output is correct
3 Correct 144 ms 21260 KB Output is correct
4 Correct 18 ms 5208 KB Output is correct
5 Correct 154 ms 22020 KB Output is correct
6 Correct 146 ms 20804 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 201 ms 27456 KB Output is correct
3 Correct 199 ms 27660 KB Output is correct
4 Correct 158 ms 28680 KB Output is correct
5 Correct 16 ms 5208 KB Output is correct
6 Correct 146 ms 22228 KB Output is correct
7 Correct 139 ms 21252 KB Output is correct
8 Correct 140 ms 21772 KB Output is correct
9 Correct 144 ms 21768 KB Output is correct
10 Correct 243 ms 24836 KB Output is correct
11 Correct 232 ms 24992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 201 ms 27456 KB Output is correct
3 Correct 199 ms 27660 KB Output is correct
4 Correct 158 ms 28680 KB Output is correct
5 Correct 16 ms 5208 KB Output is correct
6 Correct 146 ms 22228 KB Output is correct
7 Correct 139 ms 21252 KB Output is correct
8 Correct 140 ms 21772 KB Output is correct
9 Correct 144 ms 21768 KB Output is correct
10 Correct 243 ms 24836 KB Output is correct
11 Correct 232 ms 24992 KB Output is correct
12 Correct 16 ms 5212 KB Output is correct
13 Correct 202 ms 27200 KB Output is correct
14 Correct 179 ms 28424 KB Output is correct
15 Correct 197 ms 26636 KB Output is correct
16 Correct 200 ms 26628 KB Output is correct
17 Correct 16 ms 5212 KB Output is correct
18 Correct 157 ms 22024 KB Output is correct
19 Correct 152 ms 20744 KB Output is correct
20 Correct 146 ms 21252 KB Output is correct
21 Correct 151 ms 21508 KB Output is correct
22 Correct 291 ms 24084 KB Output is correct
23 Correct 247 ms 24728 KB Output is correct
24 Correct 244 ms 25352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 24 ms 6492 KB Output is correct
3 Correct 23 ms 6192 KB Output is correct
4 Correct 25 ms 6492 KB Output is correct
5 Correct 25 ms 6740 KB Output is correct
6 Correct 23 ms 6492 KB Output is correct
7 Correct 15 ms 5468 KB Output is correct
8 Correct 86 ms 23168 KB Output is correct
9 Correct 89 ms 23168 KB Output is correct
10 Correct 16 ms 5212 KB Output is correct
11 Correct 187 ms 27616 KB Output is correct
12 Correct 195 ms 27668 KB Output is correct
13 Correct 157 ms 28676 KB Output is correct
14 Correct 16 ms 5404 KB Output is correct
15 Correct 149 ms 22328 KB Output is correct
16 Correct 156 ms 21068 KB Output is correct
17 Correct 141 ms 21792 KB Output is correct
18 Correct 144 ms 21648 KB Output is correct
19 Correct 235 ms 24840 KB Output is correct
20 Correct 240 ms 24836 KB Output is correct
21 Correct 115 ms 23544 KB Output is correct
22 Correct 113 ms 22788 KB Output is correct
23 Correct 139 ms 21768 KB Output is correct
24 Correct 150 ms 22024 KB Output is correct
25 Correct 194 ms 25608 KB Output is correct
26 Correct 154 ms 21252 KB Output is correct
27 Correct 141 ms 21424 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 24 ms 6492 KB Output is correct
3 Correct 23 ms 6192 KB Output is correct
4 Correct 25 ms 6492 KB Output is correct
5 Correct 25 ms 6740 KB Output is correct
6 Correct 23 ms 6492 KB Output is correct
7 Correct 15 ms 5468 KB Output is correct
8 Correct 86 ms 23168 KB Output is correct
9 Correct 89 ms 23168 KB Output is correct
10 Correct 16 ms 5212 KB Output is correct
11 Correct 187 ms 27616 KB Output is correct
12 Correct 195 ms 27668 KB Output is correct
13 Correct 157 ms 28676 KB Output is correct
14 Correct 16 ms 5404 KB Output is correct
15 Correct 149 ms 22328 KB Output is correct
16 Correct 156 ms 21068 KB Output is correct
17 Correct 141 ms 21792 KB Output is correct
18 Correct 144 ms 21648 KB Output is correct
19 Correct 235 ms 24840 KB Output is correct
20 Correct 240 ms 24836 KB Output is correct
21 Correct 115 ms 23544 KB Output is correct
22 Correct 113 ms 22788 KB Output is correct
23 Correct 139 ms 21768 KB Output is correct
24 Correct 150 ms 22024 KB Output is correct
25 Correct 194 ms 25608 KB Output is correct
26 Correct 154 ms 21252 KB Output is correct
27 Correct 141 ms 21424 KB Output is correct
28 Correct 17 ms 5212 KB Output is correct
29 Incorrect 29 ms 6140 KB Extra information in the output file
30 Halted 0 ms 0 KB -