답안 #1093609

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1093609 2024-09-27T06:44:05 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
262 ms 25508 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            cout << (res[i] ? "yes\n" : "no\n");
        }
        else if (tpq[i] == 2)   {
            cout << res[i] << "\n";
        }
    }
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   // auto end = chrono::high_resolution_clock::now();
   // cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   // cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 5208 KB Output is correct
2 Correct 23 ms 5972 KB Output is correct
3 Correct 21 ms 5740 KB Output is correct
4 Correct 23 ms 5976 KB Output is correct
5 Correct 23 ms 6236 KB Output is correct
6 Correct 22 ms 5968 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 5208 KB Output is correct
2 Correct 23 ms 5972 KB Output is correct
3 Correct 21 ms 5740 KB Output is correct
4 Correct 23 ms 5976 KB Output is correct
5 Correct 23 ms 6236 KB Output is correct
6 Correct 22 ms 5968 KB Output is correct
7 Correct 14 ms 4956 KB Output is correct
8 Incorrect 29 ms 5720 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4460 KB Output is correct
2 Correct 88 ms 20348 KB Output is correct
3 Correct 87 ms 20392 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4460 KB Output is correct
2 Correct 88 ms 20348 KB Output is correct
3 Correct 87 ms 20392 KB Output is correct
4 Correct 14 ms 4184 KB Output is correct
5 Correct 84 ms 20276 KB Output is correct
6 Correct 65 ms 19404 KB Output is correct
7 Correct 72 ms 19328 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4444 KB Output is correct
2 Correct 194 ms 24264 KB Output is correct
3 Correct 189 ms 24336 KB Output is correct
4 Correct 158 ms 25508 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4444 KB Output is correct
2 Correct 194 ms 24264 KB Output is correct
3 Correct 189 ms 24336 KB Output is correct
4 Correct 158 ms 25508 KB Output is correct
5 Correct 15 ms 4188 KB Output is correct
6 Correct 204 ms 24276 KB Output is correct
7 Correct 168 ms 25352 KB Output is correct
8 Correct 190 ms 24136 KB Output is correct
9 Correct 202 ms 24068 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4440 KB Output is correct
2 Correct 148 ms 18888 KB Output is correct
3 Correct 139 ms 17924 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4440 KB Output is correct
2 Correct 148 ms 18888 KB Output is correct
3 Correct 139 ms 17924 KB Output is correct
4 Correct 14 ms 4188 KB Output is correct
5 Correct 171 ms 18952 KB Output is correct
6 Correct 151 ms 17928 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4440 KB Output is correct
2 Correct 187 ms 24180 KB Output is correct
3 Correct 202 ms 24204 KB Output is correct
4 Correct 167 ms 25352 KB Output is correct
5 Correct 15 ms 4440 KB Output is correct
6 Correct 144 ms 18900 KB Output is correct
7 Correct 146 ms 17928 KB Output is correct
8 Correct 131 ms 18440 KB Output is correct
9 Correct 132 ms 18440 KB Output is correct
10 Correct 227 ms 21508 KB Output is correct
11 Correct 222 ms 21512 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 4440 KB Output is correct
2 Correct 187 ms 24180 KB Output is correct
3 Correct 202 ms 24204 KB Output is correct
4 Correct 167 ms 25352 KB Output is correct
5 Correct 15 ms 4440 KB Output is correct
6 Correct 144 ms 18900 KB Output is correct
7 Correct 146 ms 17928 KB Output is correct
8 Correct 131 ms 18440 KB Output is correct
9 Correct 132 ms 18440 KB Output is correct
10 Correct 227 ms 21508 KB Output is correct
11 Correct 222 ms 21512 KB Output is correct
12 Correct 14 ms 4188 KB Output is correct
13 Correct 194 ms 24232 KB Output is correct
14 Correct 167 ms 25352 KB Output is correct
15 Correct 186 ms 24072 KB Output is correct
16 Correct 200 ms 24028 KB Output is correct
17 Correct 14 ms 4184 KB Output is correct
18 Correct 149 ms 18952 KB Output is correct
19 Correct 148 ms 17840 KB Output is correct
20 Correct 158 ms 18440 KB Output is correct
21 Correct 167 ms 18440 KB Output is correct
22 Correct 262 ms 21412 KB Output is correct
23 Correct 248 ms 21768 KB Output is correct
24 Correct 257 ms 22024 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 4440 KB Output is correct
2 Correct 22 ms 5048 KB Output is correct
3 Correct 22 ms 4700 KB Output is correct
4 Correct 24 ms 5076 KB Output is correct
5 Correct 24 ms 5204 KB Output is correct
6 Correct 22 ms 4952 KB Output is correct
7 Correct 15 ms 4444 KB Output is correct
8 Correct 92 ms 20352 KB Output is correct
9 Correct 89 ms 20348 KB Output is correct
10 Correct 14 ms 4440 KB Output is correct
11 Correct 216 ms 24412 KB Output is correct
12 Correct 194 ms 24328 KB Output is correct
13 Correct 163 ms 25484 KB Output is correct
14 Correct 18 ms 4380 KB Output is correct
15 Correct 139 ms 19064 KB Output is correct
16 Correct 137 ms 17828 KB Output is correct
17 Correct 131 ms 18440 KB Output is correct
18 Correct 131 ms 18436 KB Output is correct
19 Correct 239 ms 21508 KB Output is correct
20 Correct 224 ms 21512 KB Output is correct
21 Correct 97 ms 20232 KB Output is correct
22 Correct 98 ms 19256 KB Output is correct
23 Correct 122 ms 18588 KB Output is correct
24 Correct 135 ms 18696 KB Output is correct
25 Correct 194 ms 22280 KB Output is correct
26 Correct 143 ms 17672 KB Output is correct
27 Correct 135 ms 17924 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 4440 KB Output is correct
2 Correct 22 ms 5048 KB Output is correct
3 Correct 22 ms 4700 KB Output is correct
4 Correct 24 ms 5076 KB Output is correct
5 Correct 24 ms 5204 KB Output is correct
6 Correct 22 ms 4952 KB Output is correct
7 Correct 15 ms 4444 KB Output is correct
8 Correct 92 ms 20352 KB Output is correct
9 Correct 89 ms 20348 KB Output is correct
10 Correct 14 ms 4440 KB Output is correct
11 Correct 216 ms 24412 KB Output is correct
12 Correct 194 ms 24328 KB Output is correct
13 Correct 163 ms 25484 KB Output is correct
14 Correct 18 ms 4380 KB Output is correct
15 Correct 139 ms 19064 KB Output is correct
16 Correct 137 ms 17828 KB Output is correct
17 Correct 131 ms 18440 KB Output is correct
18 Correct 131 ms 18436 KB Output is correct
19 Correct 239 ms 21508 KB Output is correct
20 Correct 224 ms 21512 KB Output is correct
21 Correct 97 ms 20232 KB Output is correct
22 Correct 98 ms 19256 KB Output is correct
23 Correct 122 ms 18588 KB Output is correct
24 Correct 135 ms 18696 KB Output is correct
25 Correct 194 ms 22280 KB Output is correct
26 Correct 143 ms 17672 KB Output is correct
27 Correct 135 ms 17924 KB Output is correct
28 Correct 15 ms 4360 KB Output is correct
29 Incorrect 25 ms 4952 KB Extra information in the output file
30 Halted 0 ms 0 KB -