답안 #1093606

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1093606 2024-09-27T06:39:38 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
255 ms 28784 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            cout << (res[i] ? "yes" : "no") << "\n";
        }
        else if (tpq[i] == 2)   {
            cout << res[i] << "\n";
        }
    }
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   // auto end = chrono::high_resolution_clock::now();
   // cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   // cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 5208 KB Output is correct
2 Correct 26 ms 6396 KB Output is correct
3 Correct 22 ms 6116 KB Output is correct
4 Correct 25 ms 6484 KB Output is correct
5 Correct 25 ms 6736 KB Output is correct
6 Correct 27 ms 6480 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 5208 KB Output is correct
2 Correct 26 ms 6396 KB Output is correct
3 Correct 22 ms 6116 KB Output is correct
4 Correct 25 ms 6484 KB Output is correct
5 Correct 25 ms 6736 KB Output is correct
6 Correct 27 ms 6480 KB Output is correct
7 Correct 19 ms 5208 KB Output is correct
8 Incorrect 29 ms 5980 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 5212 KB Output is correct
2 Correct 89 ms 23168 KB Output is correct
3 Correct 90 ms 23164 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 5212 KB Output is correct
2 Correct 89 ms 23168 KB Output is correct
3 Correct 90 ms 23164 KB Output is correct
4 Correct 18 ms 5212 KB Output is correct
5 Correct 92 ms 22908 KB Output is correct
6 Correct 66 ms 21044 KB Output is correct
7 Correct 70 ms 21360 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 17 ms 5208 KB Output is correct
2 Correct 206 ms 27460 KB Output is correct
3 Correct 200 ms 27652 KB Output is correct
4 Correct 159 ms 28612 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 17 ms 5208 KB Output is correct
2 Correct 206 ms 27460 KB Output is correct
3 Correct 200 ms 27652 KB Output is correct
4 Correct 159 ms 28612 KB Output is correct
5 Correct 16 ms 5212 KB Output is correct
6 Correct 200 ms 27144 KB Output is correct
7 Correct 180 ms 28424 KB Output is correct
8 Correct 233 ms 26884 KB Output is correct
9 Correct 200 ms 26632 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 150 ms 22180 KB Output is correct
3 Correct 156 ms 21236 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 150 ms 22180 KB Output is correct
3 Correct 156 ms 21236 KB Output is correct
4 Correct 18 ms 5212 KB Output is correct
5 Correct 164 ms 21976 KB Output is correct
6 Correct 152 ms 20744 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 17 ms 5412 KB Output is correct
2 Correct 203 ms 27656 KB Output is correct
3 Correct 205 ms 27652 KB Output is correct
4 Correct 159 ms 28784 KB Output is correct
5 Correct 19 ms 5212 KB Output is correct
6 Correct 146 ms 22280 KB Output is correct
7 Correct 144 ms 21252 KB Output is correct
8 Correct 145 ms 21768 KB Output is correct
9 Correct 144 ms 21544 KB Output is correct
10 Correct 230 ms 24840 KB Output is correct
11 Correct 221 ms 24752 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 17 ms 5412 KB Output is correct
2 Correct 203 ms 27656 KB Output is correct
3 Correct 205 ms 27652 KB Output is correct
4 Correct 159 ms 28784 KB Output is correct
5 Correct 19 ms 5212 KB Output is correct
6 Correct 146 ms 22280 KB Output is correct
7 Correct 144 ms 21252 KB Output is correct
8 Correct 145 ms 21768 KB Output is correct
9 Correct 144 ms 21544 KB Output is correct
10 Correct 230 ms 24840 KB Output is correct
11 Correct 221 ms 24752 KB Output is correct
12 Correct 25 ms 5204 KB Output is correct
13 Correct 217 ms 27196 KB Output is correct
14 Correct 177 ms 28544 KB Output is correct
15 Correct 212 ms 26756 KB Output is correct
16 Correct 207 ms 26860 KB Output is correct
17 Correct 17 ms 5208 KB Output is correct
18 Correct 170 ms 21960 KB Output is correct
19 Correct 166 ms 20916 KB Output is correct
20 Correct 147 ms 21256 KB Output is correct
21 Correct 153 ms 21396 KB Output is correct
22 Correct 253 ms 24312 KB Output is correct
23 Correct 240 ms 24912 KB Output is correct
24 Correct 248 ms 25176 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 24 ms 6372 KB Output is correct
3 Correct 22 ms 6196 KB Output is correct
4 Correct 25 ms 6544 KB Output is correct
5 Correct 25 ms 6744 KB Output is correct
6 Correct 23 ms 6492 KB Output is correct
7 Correct 16 ms 5468 KB Output is correct
8 Correct 86 ms 23164 KB Output is correct
9 Correct 93 ms 23164 KB Output is correct
10 Correct 17 ms 5212 KB Output is correct
11 Correct 192 ms 27588 KB Output is correct
12 Correct 193 ms 27620 KB Output is correct
13 Correct 160 ms 28676 KB Output is correct
14 Correct 16 ms 5212 KB Output is correct
15 Correct 144 ms 22276 KB Output is correct
16 Correct 143 ms 21256 KB Output is correct
17 Correct 146 ms 21768 KB Output is correct
18 Correct 143 ms 21764 KB Output is correct
19 Correct 255 ms 24836 KB Output is correct
20 Correct 241 ms 24784 KB Output is correct
21 Correct 106 ms 23600 KB Output is correct
22 Correct 108 ms 22788 KB Output is correct
23 Correct 133 ms 21768 KB Output is correct
24 Correct 148 ms 22004 KB Output is correct
25 Correct 190 ms 25604 KB Output is correct
26 Correct 145 ms 21252 KB Output is correct
27 Correct 150 ms 21256 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 24 ms 6372 KB Output is correct
3 Correct 22 ms 6196 KB Output is correct
4 Correct 25 ms 6544 KB Output is correct
5 Correct 25 ms 6744 KB Output is correct
6 Correct 23 ms 6492 KB Output is correct
7 Correct 16 ms 5468 KB Output is correct
8 Correct 86 ms 23164 KB Output is correct
9 Correct 93 ms 23164 KB Output is correct
10 Correct 17 ms 5212 KB Output is correct
11 Correct 192 ms 27588 KB Output is correct
12 Correct 193 ms 27620 KB Output is correct
13 Correct 160 ms 28676 KB Output is correct
14 Correct 16 ms 5212 KB Output is correct
15 Correct 144 ms 22276 KB Output is correct
16 Correct 143 ms 21256 KB Output is correct
17 Correct 146 ms 21768 KB Output is correct
18 Correct 143 ms 21764 KB Output is correct
19 Correct 255 ms 24836 KB Output is correct
20 Correct 241 ms 24784 KB Output is correct
21 Correct 106 ms 23600 KB Output is correct
22 Correct 108 ms 22788 KB Output is correct
23 Correct 133 ms 21768 KB Output is correct
24 Correct 148 ms 22004 KB Output is correct
25 Correct 190 ms 25604 KB Output is correct
26 Correct 145 ms 21252 KB Output is correct
27 Correct 150 ms 21256 KB Output is correct
28 Correct 16 ms 5208 KB Output is correct
29 Incorrect 28 ms 5980 KB Extra information in the output file
30 Halted 0 ms 0 KB -