Submission #1093605

# Submission time Handle Problem Language Result Execution time Memory
1093605 2024-09-27T06:37:23 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
315 ms 28936 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        vis_dfs[u] = pw;
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            cout << (res[i] ? "yes" : "no") << "\n";
        }
        else if (tpq[i] == 2)   {
            cout << res[i] << "\n";
        }
    }
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 29 ms 6480 KB Output is correct
3 Correct 29 ms 6244 KB Output is correct
4 Correct 26 ms 6488 KB Output is correct
5 Correct 26 ms 6748 KB Output is correct
6 Correct 24 ms 6492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5212 KB Output is correct
2 Correct 29 ms 6480 KB Output is correct
3 Correct 29 ms 6244 KB Output is correct
4 Correct 26 ms 6488 KB Output is correct
5 Correct 26 ms 6748 KB Output is correct
6 Correct 24 ms 6492 KB Output is correct
7 Correct 16 ms 5168 KB Output is correct
8 Incorrect 27 ms 5972 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 21 ms 5208 KB Output is correct
2 Correct 108 ms 23332 KB Output is correct
3 Correct 93 ms 23196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 21 ms 5208 KB Output is correct
2 Correct 108 ms 23332 KB Output is correct
3 Correct 93 ms 23196 KB Output is correct
4 Correct 21 ms 5208 KB Output is correct
5 Correct 132 ms 22912 KB Output is correct
6 Correct 66 ms 21044 KB Output is correct
7 Correct 69 ms 21376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 229 ms 27564 KB Output is correct
3 Correct 207 ms 27496 KB Output is correct
4 Correct 157 ms 28632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 229 ms 27564 KB Output is correct
3 Correct 207 ms 27496 KB Output is correct
4 Correct 157 ms 28632 KB Output is correct
5 Correct 17 ms 5212 KB Output is correct
6 Correct 209 ms 27188 KB Output is correct
7 Correct 174 ms 28424 KB Output is correct
8 Correct 199 ms 26888 KB Output is correct
9 Correct 205 ms 26884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 5208 KB Output is correct
2 Correct 160 ms 22276 KB Output is correct
3 Correct 142 ms 21064 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 5208 KB Output is correct
2 Correct 160 ms 22276 KB Output is correct
3 Correct 142 ms 21064 KB Output is correct
4 Correct 17 ms 5212 KB Output is correct
5 Correct 168 ms 22016 KB Output is correct
6 Correct 154 ms 20816 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 5212 KB Output is correct
2 Correct 227 ms 27444 KB Output is correct
3 Correct 195 ms 27656 KB Output is correct
4 Correct 157 ms 28680 KB Output is correct
5 Correct 17 ms 5416 KB Output is correct
6 Correct 149 ms 22280 KB Output is correct
7 Correct 146 ms 21256 KB Output is correct
8 Correct 159 ms 21672 KB Output is correct
9 Correct 142 ms 21616 KB Output is correct
10 Correct 229 ms 24832 KB Output is correct
11 Correct 247 ms 24744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 5212 KB Output is correct
2 Correct 227 ms 27444 KB Output is correct
3 Correct 195 ms 27656 KB Output is correct
4 Correct 157 ms 28680 KB Output is correct
5 Correct 17 ms 5416 KB Output is correct
6 Correct 149 ms 22280 KB Output is correct
7 Correct 146 ms 21256 KB Output is correct
8 Correct 159 ms 21672 KB Output is correct
9 Correct 142 ms 21616 KB Output is correct
10 Correct 229 ms 24832 KB Output is correct
11 Correct 247 ms 24744 KB Output is correct
12 Correct 16 ms 5212 KB Output is correct
13 Correct 207 ms 27456 KB Output is correct
14 Correct 172 ms 28388 KB Output is correct
15 Correct 206 ms 26632 KB Output is correct
16 Correct 196 ms 26668 KB Output is correct
17 Correct 18 ms 5208 KB Output is correct
18 Correct 196 ms 21520 KB Output is correct
19 Correct 154 ms 20740 KB Output is correct
20 Correct 138 ms 21404 KB Output is correct
21 Correct 162 ms 21512 KB Output is correct
22 Correct 253 ms 24272 KB Output is correct
23 Correct 315 ms 24840 KB Output is correct
24 Correct 259 ms 25348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 5380 KB Output is correct
2 Correct 26 ms 6452 KB Output is correct
3 Correct 22 ms 6236 KB Output is correct
4 Correct 25 ms 6480 KB Output is correct
5 Correct 25 ms 6744 KB Output is correct
6 Correct 25 ms 6436 KB Output is correct
7 Correct 17 ms 5464 KB Output is correct
8 Correct 95 ms 23136 KB Output is correct
9 Correct 89 ms 23164 KB Output is correct
10 Correct 21 ms 5468 KB Output is correct
11 Correct 210 ms 27532 KB Output is correct
12 Correct 205 ms 27652 KB Output is correct
13 Correct 165 ms 28936 KB Output is correct
14 Correct 17 ms 5208 KB Output is correct
15 Correct 155 ms 22276 KB Output is correct
16 Correct 141 ms 21252 KB Output is correct
17 Correct 145 ms 22020 KB Output is correct
18 Correct 148 ms 21768 KB Output is correct
19 Correct 241 ms 24836 KB Output is correct
20 Correct 237 ms 25064 KB Output is correct
21 Correct 122 ms 23560 KB Output is correct
22 Correct 107 ms 22668 KB Output is correct
23 Correct 143 ms 22016 KB Output is correct
24 Correct 148 ms 21848 KB Output is correct
25 Correct 186 ms 25608 KB Output is correct
26 Correct 149 ms 21252 KB Output is correct
27 Correct 145 ms 21252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 5380 KB Output is correct
2 Correct 26 ms 6452 KB Output is correct
3 Correct 22 ms 6236 KB Output is correct
4 Correct 25 ms 6480 KB Output is correct
5 Correct 25 ms 6744 KB Output is correct
6 Correct 25 ms 6436 KB Output is correct
7 Correct 17 ms 5464 KB Output is correct
8 Correct 95 ms 23136 KB Output is correct
9 Correct 89 ms 23164 KB Output is correct
10 Correct 21 ms 5468 KB Output is correct
11 Correct 210 ms 27532 KB Output is correct
12 Correct 205 ms 27652 KB Output is correct
13 Correct 165 ms 28936 KB Output is correct
14 Correct 17 ms 5208 KB Output is correct
15 Correct 155 ms 22276 KB Output is correct
16 Correct 141 ms 21252 KB Output is correct
17 Correct 145 ms 22020 KB Output is correct
18 Correct 148 ms 21768 KB Output is correct
19 Correct 241 ms 24836 KB Output is correct
20 Correct 237 ms 25064 KB Output is correct
21 Correct 122 ms 23560 KB Output is correct
22 Correct 107 ms 22668 KB Output is correct
23 Correct 143 ms 22016 KB Output is correct
24 Correct 148 ms 21848 KB Output is correct
25 Correct 186 ms 25608 KB Output is correct
26 Correct 149 ms 21252 KB Output is correct
27 Correct 145 ms 21252 KB Output is correct
28 Correct 17 ms 5212 KB Output is correct
29 Incorrect 36 ms 5980 KB Extra information in the output file
30 Halted 0 ms 0 KB -