Submission #1093604

# Submission time Handle Problem Language Result Execution time Memory
1093604 2024-09-27T06:35:10 Z CDuong Inside information (BOI21_servers) C++17
80 / 100
291 ms 28756 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

template<bool ALLOW_NON_PREFIX_QUERY, class T, class F, class I>
struct fenwick_tree{
    int n;
    vector<T> data;
    F TT;
    T T_id;
    I Tinv;
    fenwick_tree(F TT, T T_id, I Tinv): TT(TT), T_id(T_id), Tinv(Tinv){ }
    fenwick_tree &operator=(const fenwick_tree &fw){
        n = fw.n;
        data = fw.data;
    }
    // O(n)
    void build(int n){
        assert(n >= 0);
        this->n = n;
        data.assign(n, T_id);
    }
    // O(n)
    void build(int n, T x){
        assert(n >= 0);
        this->n = n;
        data.assign(n, x);
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(n)
    template<class U>
    void build(const vector<U> &a){
        n = (int)a.size();
        data.resize(n);
        copy(a.begin(), a.end(), data.begin());
        for(auto i = 1; i <= n; ++ i) if(i + (i & -i) <= n) data[i + (i & -i) - 1] = TT(data[i + (i & -i) - 1], data[i - 1]);
    }
    // O(log(n))
    void update(int p, T x){
        assert(0 <= p && p < n);
        for(++ p; p <= n; p += p & -p) data[p - 1] = TT(data[p - 1], x);
    }
    // O(log(n))
    void set(int p, T x){
        update(p, TT(x, Tinv(query(p))));
    }
    // O(log(n))
    T prefix(int r) const{
        assert(0 <= r && r <= n);
        T s = T_id;
        for(; r > 0; r -= r & -r) s = TT(s, data[r - 1]);
        return s;
    }
    // O(log(n))
    T query(int l, int r) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        assert(0 <= l && l <= r && r <= n);
        if(l == r) return T_id;
        T sum_minus = T_id, sum_plus = T_id;
        for(; l < r; r -= r & -r) sum_plus = TT(sum_plus, data[r - 1]);
        for(; r < l; l -= l & -l) sum_minus = TT(sum_minus, data[l - 1]);
        return TT(sum_plus, Tinv(sum_minus));
    }
    // O(log(n))
    T query(int p) const{
        static_assert(ALLOW_NON_PREFIX_QUERY);
        return query(p, p + 1);
    }
    // O(log(n))
    T query_all() const{
        return prefix(n);
    }
    // pred(sum[0, r)) is T, T, ..., T, F, F, ..., F, returns max r with T
    // O(log(n))
    int max_pref(auto pred) const{
        assert(pred(T_id));
        int p = 0;
        T sum = T_id;
        for(auto i = __lg(n + 1); i >= 0; -- i) if(p + (1 << i) <= n && pred(TT(sum, data[p + (1 << i) - 1]))){
            sum = TT(sum, data[p + (1 << i) - 1]);
            p += 1 << i;
        }
        return p;
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const fenwick_tree &fw){
        out << "{";
        for(auto i = 0; i < fw.n; ++ i){
            out << fw.query(i);
            if(i != fw.n - 1) out << ", ";
        }
        return out << '}';
    }
};

template<class T, class F, class I>
auto make_fenwick_tree(F TT, T T_id, I Tinv){
    return fenwick_tree<true, T, F, I>(TT, T_id, Tinv);
}
template<class T>
auto make_fenwick_tree_sum(){
    return fenwick_tree<true, T, plus<>, negate<>>(plus<>(), T{0}, negate<>());
}
template<class T>
auto make_fenwick_tree_product(){
    auto inverse = [](const T &x){ return 1 / x; };
    return fenwick_tree<true, T, multiplies<>, decltype(inverse)>(multiplies<>(), T{1}, inverse);
}
template<class T>
auto make_fenwick_tree_min(){
    auto TT = [&](const T &x, const T &y)->T{ return min(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}
template<class T>
auto make_fenwick_tree_max(){
    auto TT = [&](const T &x, const T &y)->T{ return max(x, y); };
    return fenwick_tree<false, T, decltype(TT), negate<>>(TT, numeric_limits<T>::max(), negate<>());
}

template<class T>
struct graph{
    using Weight_t = T;
    struct Edge_t{
        int from, to;
        T cost;
    };
    int n;
    vector<Edge_t> edge;
    vector<vector<int>> adj;
    function<bool(int)> ignore;
    graph(int n = 1): n(n), adj(n){
        assert(n >= 1);
    }
    graph(const vector<vector<int>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v);
        }
        else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v);
    }
    graph(const vector<vector<pair<int, T>>> &adj, bool undirected = true): n((int)adj.size()), adj(n){
        assert(n >= 1);
        if(undirected){
            for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w);
        }
        else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w);
    }
    graph(int n, vector<array<int, 2>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v);
    }
    graph(int n, vector<tuple<int, int, T>> &edge, bool undirected = true): n(n), adj(n){
        assert(n >= 1);
        for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w);
    }
    int add_vertex(){
        adj.emplace_back();
        return n ++;
    }
    int operator()(int u, int id) const{
        #ifdef LOCAL
        assert(0 <= id && id < (int)edge.size());
        assert(edge[id].from == u || edge[id].to == u);
        #endif
        return u ^ edge[id].from ^ edge[id].to;
    }
    int link(int u, int v, T w = {}){ // insert an undirected edge
        int id = (int)edge.size();
        adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    int orient(int u, int v, T w = {}){ // insert a directed edge
        int id = (int)edge.size();
        adj[u].push_back(id), edge.push_back({u, v, w});
        return id;
    }
    vector<int> neighbor(int u, int exclude = -1) const{
        vector<int> res;
        for(auto id: adj[u]){
            if(id == exclude || ignore && ignore(id)) continue;
            res.push_back(operator()(u, id));
        }
        return res;
    }
    void clear(){
        for(auto [u, v, w]: edge){
            adj[u].clear();
            adj[v].clear();
        }
        edge.clear();
        ignore = {};
    }
    graph transpose() const{ // the transpose of the directed graph
        graph res(n);
        for(auto id = 0; id < (int)edge.size(); ++ id){
            if(ignore && ignore(id)) continue;
            res.orient(edge[id].to, edge[id].from, edge[id].cost);
        }
        return res;
    }
    int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule)
        return (int)adj[u].size();
    }
    // The adjacency list is sorted for each vertex.
    vector<vector<int>> get_adjacency_list() const{
        vector<vector<int>> res(n);
        for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){
            if(ignore && ignore(id)) continue;
            res[(*this)(u, id)].push_back(u);
        }
        return res;
    }
    void set_ignoration_rule(const function<bool(int)> &f){
        ignore = f;
    }
    void reset_ignoration_rule(){
        ignore = nullptr;
    }
    friend ostream &operator<<(ostream &out, const graph &g){
        for(auto id = 0; id < (int)g.edge.size(); ++ id){
            if(g.ignore && g.ignore(id)) continue;
            auto &e = g.edge[id];
            out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n";
        }
        return out;
    }
};

struct Query {
    int v, val, qid;
    Query(int v, int val, int qid) : v(v), val(val), qid(qid) {}
};

struct T1 {
    int res;
    int mn, mx;
};

void solve() {
    int n, q;
    cin >> n >> q;

    graph<int> g(n);
    vector<int> tpq(n + q), res(n + q);
    vector<vector<Query>> queries(n);
    int cq = 0;
    for (int i = 0; i < n - 1 + q; ++i) {
        char ch;
        cin >> ch;
        if (ch == 'S') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            // cout << u << " " << v << " " << i << endl;
            g.link(u, v, i);
            tpq[i] = 0;
        }
        else if (ch == 'Q') {
            int u, v;
            cin >> u >> v;
            --u, --v;
            // if (++cq == 7704) {
                // cout << i << " " << v << " " << u << endl;
            // }
            queries[v].emplace_back(u, i, i);
            tpq[i] = 1;
        }
        else {
            int u;
            cin >> u;
            --u;
            queries[u].emplace_back(-1, i, i);
            tpq[i] = 2;
        }
    }

    for (int i = 0; i < n; ++i) {
        reverse(all(g.adj[i]));
        // for (int j = 1; j < isz(g.adj[i]); ++j) {
        //     assert(g.edge[g.adj[i][j]].cost < g.edge[g.adj[i][j - 1]].cost);
        // }
    }

    int tot_sz = 0;
    vector<bool> vis(n);
    vector<int> sz(n);

    auto get_sz = [&](auto self, int u, int _pid) -> void {
        sz[u] = 1;
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            self(self, v, id);
            sz[u] += sz[v];
        }
    };

    // for (int i = 0; i < n; ++i) {
    //     for (auto [u, val, qid] : queries[i]) {
    //         cout << i << " " << u << " " << val << endl;
    //     }
    // }

    auto find_cen = [&](auto self, int u, int _pid) -> int {
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)]) {
            int v = g(u, id);
            if (sz[v] > (tot_sz >> 1)) {
                return self(self, v, id);
            }
        }
        return u;
    };

    auto get_cen = [&](int v) -> int {
        get_sz(get_sz, v, -1);
        tot_sz = sz[v];
        return find_cen(find_cen, v, -1);
    };

    auto fenw = make_fenwick_tree_sum<int>();
    fenw.build(n + q);

    vector<int> vis_dfs(n, n + q);
    vector<pair<int, int>> rst;
    auto dfs1 = [&](auto self, int u, int _pid, int pw) -> void {
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                // if (qid == 7706) {
                //     cout << vis_dfs[v] << " " << val << endl;
                // }
                // cout << u << " -> " << v << " " << vis_dfs[v] << " " << val << endl;
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost < pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto add = [&](int u, int pw) -> void {
        // cout << "add: " << u << " " << pw << endl;
        vis_dfs[u] = pw;
        // if (u == 19) {
        //     cout << u << " " << pw << endl;
        //     // return;
        // }
        fenw.update(pw, 1);
        rst.emplace_back(u, pw);
    };

    auto dfs2 = [&](auto self, int u, int _pid, int pw) -> void {
        add(u, pw);
        for (auto id : g.adj[u]) if (id != _pid and not vis[g(u, id)] and g.edge[id].cost > pw) {
            int v = g(u, id);
            self(self, v, id, g.edge[id].cost);
        }
    };

    auto reset = [&]() -> void {
        while (not rst.empty()) {
            auto [u, pw] = rst.back();
            // cout << "del: " << u << " " << pw << endl;
            rst.pop_back();
            vis_dfs[u] = n + q;
            fenw.update(pw, -1);
        }
    };

    auto centroid = [&](auto self, int u) -> void {
        // cout << "centroid: " << u << endl;
        vis[u] = true;
        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            add(u, g.edge[id].cost);
            dfs1(dfs1, v, -1, g.edge[id].cost);
            {
                auto [u, pw] = rst.back();
                // cout << "del: " << u << " " << pw << endl;
                rst.pop_back();
                vis_dfs[u] = n + q;
                fenw.update(pw, -1);
            }
            dfs2(dfs2, v, -1, g.edge[id].cost);
        }
        add(u, 0);
        for (auto [v, val, qid] : queries[u]) {
            if (v == -1) {
                res[qid] += fenw.prefix(val);
            }
            else {
                // if (qid == 7706) {
                //     cout << vis_dfs[v] << " " << val << endl;
                // }
                // cout << u << " -> " << v << " " << vis_dfs[v] << " " << val << endl;
                res[qid] |= (vis_dfs[v] <= val);
            }
        }
        reset();

        for (auto id : g.adj[u]) if (not vis[g(u, id)]) {
            int v = g(u, id);
            int nxt_cen = get_cen(v);
            self(self, nxt_cen);
        }
    };

    int cen = get_cen(0);
    centroid(centroid, cen);

    for (int i = 0; i < n + q - 1; ++i) {
        if (tpq[i] == 1) {
            cout << (res[i] ? "yes" : "no") << "\n";
        }
        else if (tpq[i] == 2)   {
            cout << res[i] << "\n";
        }
    }
    cout << endl;
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}

Compilation message

servers.cpp:84:18: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   84 |     int max_pref(auto pred) const{
      |                  ^~~~
servers.cpp: In function 'void solve()':
servers.cpp:255:9: warning: unused variable 'cq' [-Wunused-variable]
  255 |     int cq = 0;
      |         ^~
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4444 KB Output is correct
2 Correct 24 ms 4956 KB Output is correct
3 Correct 22 ms 6224 KB Output is correct
4 Correct 24 ms 6476 KB Output is correct
5 Correct 26 ms 6572 KB Output is correct
6 Correct 24 ms 6516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4444 KB Output is correct
2 Correct 24 ms 4956 KB Output is correct
3 Correct 22 ms 6224 KB Output is correct
4 Correct 24 ms 6476 KB Output is correct
5 Correct 26 ms 6572 KB Output is correct
6 Correct 24 ms 6516 KB Output is correct
7 Correct 17 ms 5212 KB Output is correct
8 Incorrect 28 ms 6148 KB Extra information in the output file
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 4440 KB Output is correct
2 Correct 107 ms 23168 KB Output is correct
3 Correct 101 ms 23168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 4440 KB Output is correct
2 Correct 107 ms 23168 KB Output is correct
3 Correct 101 ms 23168 KB Output is correct
4 Correct 16 ms 5212 KB Output is correct
5 Correct 98 ms 22968 KB Output is correct
6 Correct 65 ms 21036 KB Output is correct
7 Correct 69 ms 21376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 5208 KB Output is correct
2 Correct 201 ms 27536 KB Output is correct
3 Correct 204 ms 27492 KB Output is correct
4 Correct 166 ms 28676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 5208 KB Output is correct
2 Correct 201 ms 27536 KB Output is correct
3 Correct 204 ms 27492 KB Output is correct
4 Correct 166 ms 28676 KB Output is correct
5 Correct 16 ms 5208 KB Output is correct
6 Correct 216 ms 27200 KB Output is correct
7 Correct 174 ms 28428 KB Output is correct
8 Correct 209 ms 26888 KB Output is correct
9 Correct 196 ms 26884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 158 ms 22276 KB Output is correct
3 Correct 147 ms 21256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 5208 KB Output is correct
2 Correct 158 ms 22276 KB Output is correct
3 Correct 147 ms 21256 KB Output is correct
4 Correct 17 ms 5212 KB Output is correct
5 Correct 161 ms 21860 KB Output is correct
6 Correct 152 ms 20744 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 5200 KB Output is correct
2 Correct 198 ms 27656 KB Output is correct
3 Correct 209 ms 27672 KB Output is correct
4 Correct 163 ms 28720 KB Output is correct
5 Correct 17 ms 5212 KB Output is correct
6 Correct 150 ms 22276 KB Output is correct
7 Correct 147 ms 21252 KB Output is correct
8 Correct 144 ms 21768 KB Output is correct
9 Correct 144 ms 21764 KB Output is correct
10 Correct 249 ms 24960 KB Output is correct
11 Correct 249 ms 24780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 17 ms 5200 KB Output is correct
2 Correct 198 ms 27656 KB Output is correct
3 Correct 209 ms 27672 KB Output is correct
4 Correct 163 ms 28720 KB Output is correct
5 Correct 17 ms 5212 KB Output is correct
6 Correct 150 ms 22276 KB Output is correct
7 Correct 147 ms 21252 KB Output is correct
8 Correct 144 ms 21768 KB Output is correct
9 Correct 144 ms 21764 KB Output is correct
10 Correct 249 ms 24960 KB Output is correct
11 Correct 249 ms 24780 KB Output is correct
12 Correct 22 ms 5208 KB Output is correct
13 Correct 209 ms 27268 KB Output is correct
14 Correct 177 ms 28424 KB Output is correct
15 Correct 200 ms 26884 KB Output is correct
16 Correct 222 ms 26884 KB Output is correct
17 Correct 17 ms 5200 KB Output is correct
18 Correct 157 ms 22024 KB Output is correct
19 Correct 161 ms 20816 KB Output is correct
20 Correct 151 ms 21412 KB Output is correct
21 Correct 149 ms 21344 KB Output is correct
22 Correct 287 ms 24072 KB Output is correct
23 Correct 260 ms 24880 KB Output is correct
24 Correct 291 ms 25348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 5432 KB Output is correct
2 Correct 26 ms 6492 KB Output is correct
3 Correct 23 ms 6224 KB Output is correct
4 Correct 26 ms 6480 KB Output is correct
5 Correct 26 ms 6736 KB Output is correct
6 Correct 29 ms 6564 KB Output is correct
7 Correct 15 ms 5468 KB Output is correct
8 Correct 111 ms 23272 KB Output is correct
9 Correct 88 ms 23164 KB Output is correct
10 Correct 16 ms 5212 KB Output is correct
11 Correct 198 ms 27656 KB Output is correct
12 Correct 208 ms 27524 KB Output is correct
13 Correct 179 ms 28756 KB Output is correct
14 Correct 17 ms 5212 KB Output is correct
15 Correct 154 ms 22528 KB Output is correct
16 Correct 152 ms 21256 KB Output is correct
17 Correct 143 ms 21764 KB Output is correct
18 Correct 149 ms 21748 KB Output is correct
19 Correct 230 ms 24836 KB Output is correct
20 Correct 238 ms 24836 KB Output is correct
21 Correct 114 ms 23560 KB Output is correct
22 Correct 107 ms 22788 KB Output is correct
23 Correct 130 ms 21764 KB Output is correct
24 Correct 142 ms 22024 KB Output is correct
25 Correct 194 ms 25536 KB Output is correct
26 Correct 149 ms 21256 KB Output is correct
27 Correct 156 ms 21256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 5432 KB Output is correct
2 Correct 26 ms 6492 KB Output is correct
3 Correct 23 ms 6224 KB Output is correct
4 Correct 26 ms 6480 KB Output is correct
5 Correct 26 ms 6736 KB Output is correct
6 Correct 29 ms 6564 KB Output is correct
7 Correct 15 ms 5468 KB Output is correct
8 Correct 111 ms 23272 KB Output is correct
9 Correct 88 ms 23164 KB Output is correct
10 Correct 16 ms 5212 KB Output is correct
11 Correct 198 ms 27656 KB Output is correct
12 Correct 208 ms 27524 KB Output is correct
13 Correct 179 ms 28756 KB Output is correct
14 Correct 17 ms 5212 KB Output is correct
15 Correct 154 ms 22528 KB Output is correct
16 Correct 152 ms 21256 KB Output is correct
17 Correct 143 ms 21764 KB Output is correct
18 Correct 149 ms 21748 KB Output is correct
19 Correct 230 ms 24836 KB Output is correct
20 Correct 238 ms 24836 KB Output is correct
21 Correct 114 ms 23560 KB Output is correct
22 Correct 107 ms 22788 KB Output is correct
23 Correct 130 ms 21764 KB Output is correct
24 Correct 142 ms 22024 KB Output is correct
25 Correct 194 ms 25536 KB Output is correct
26 Correct 149 ms 21256 KB Output is correct
27 Correct 156 ms 21256 KB Output is correct
28 Correct 17 ms 5208 KB Output is correct
29 Incorrect 27 ms 6148 KB Extra information in the output file
30 Halted 0 ms 0 KB -