답안 #1093531

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1093531 2024-09-27T02:39:54 Z vjudge1 Toll (BOI17_toll) C++17
100 / 100
220 ms 75068 KB
/*
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt")
*/

#include <bits/stdc++.h>
#define taskname ""
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define i64 long long
#define isz(x) (int)x.size()
using namespace std;

const int inf = 1e9;

template<class T>
struct matrix{
    int n, m;
    vector<vector<T>> data;
    vector<T> &operator[](int i){
        assert(0 <= i && i < n);
        return data[i];
    }
    const vector<T> &operator[](int i) const{
        assert(0 <= i && i < n);
        return data[i];
    }
    matrix &inplace_slice(int il, int ir, int jl, int jr){
        assert(0 <= il && il <= ir && ir <= n);
        assert(0 <= jl && jl <= jr && jr <= m);
        n = ir - il, m = jr - jl;
        if(il > 0) for(auto i = 0; i < n; ++ i) swap(data[i], data[il + i]);
        data.resize(n);
        for(auto &row: data){
            row.erase(row.begin(), row.begin() + jl);
            row.resize(m);
        }
        return *this;
    }
    matrix slice(int il, int ir, int jl, int jr) const{
        return matrix(*this).inplace_slice(il, ir, jl, jr);
    }
    matrix &inplace_row_slice(int il, int ir){
        assert(0 <= il && il <= ir && ir <= n);
        n = ir - il;
        if(il > 0) for(auto i = 0; i < n; ++ i) swap(data[i], data[il + i]);
        data.resize(n);
        return *this;
    }
    matrix row_slice(int il, int ir) const{
        return matrix(*this).inplace_row_slice(il, ir);
    }
    matrix &inplace_column_slice(int jl, int jr){
        assert(0 <= jl && jl <= jr && jr <= m);
        m = jr - jl;
        for(auto &row: data){
            row.erase(row.begin(), row.begin() + jl);
            row.resize(m);
        }
        return *this;
    }
    matrix column_slice(int jl, int jr) const{
        return matrix(*this).inplace_column_slice(jl, jr);
    }
    bool operator==(const matrix &a) const{
        assert(n == a.n && m == a.m);
        return data == a.data;
    }
    bool operator!=(const matrix &a) const{
        assert(n == a.n && m == a.m);
        return data != a.data;
    }
    matrix &operator+=(const matrix &a){
        assert(n == a.n && m == a.m);
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a[i][j];
        return *this;
    }
    matrix operator+(const matrix &a) const{
        return matrix(*this) += a;
    }
    matrix &operator-=(const matrix &a){
        assert(n == a.n && m == a.m);
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] -= a[i][j];
        return *this;
    }
    matrix operator-(const matrix &a) const{
        return matrix(*this) -= a;
    }
    matrix operator*=(const matrix &a){
        assert(m == a.n);
        int l = a.m;
        matrix res(n, l, inf, inf);
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) for(auto k = 0; k < l; ++ k) res[i][k] = min(res[i][k], data[i][j] + a[j][k]);
        return *this = res;
    }
    matrix operator*(const matrix &a) const{
        return matrix(*this) *= a;
    }
    matrix &operator*=(T c){
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] *= c;
        return *this;
    }
    matrix operator*(T c) const{
        return matrix(*this) *= c;
    }
    template<class U, typename enable_if<is_integral<U>::value>::type* = nullptr>
    matrix &inplace_power(U e){
        assert(n == m && e >= 0);
        matrix res(n, n, T{1});
        for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
        return *this = res;
    }
    template<class U>
    matrix power(U e) const{
        return matrix(*this).inplace_power(e);
    }
    matrix &inplace_transpose(){
        assert(n == m);
        for(auto i = 0; i < n; ++ i) for(auto j = i + 1; j < n; ++ j) swap(data[i][j], data[j][i]);
        return *this;
    }
    matrix transpose() const{
        if(n == m) return matrix(*this).inplace_transpose();
        matrix res(m, n);
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[j][i] = data[i][j];
        return res;
    }
    vector<T> operator*(const vector<T> &v) const{
        assert(m == (int)v.size());
        vector<T> res(n, T{0});
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[i] += data[i][j] * v[j];
        return res;
    }
    // Assumes T is either a floating, integral, or a modular type.
    // If T is a floating type, O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
    // Otherwise, O(n * up_to * log(size)) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
    // Returns {REF matrix, determinant, rank}
    tuple<matrix &, T, int> inplace_REF(int up_to = -1){
        if(n == 0) return {*this, T{1}, 0};
        if(!~up_to) up_to = m;
        T det = 1;
        int rank = 0;
        for(auto j = 0; j < up_to; ++ j){
            if constexpr(is_floating_point_v<T>){
                static const T eps = 1e-9;
                int pivot = rank;
                for(auto i = rank + 1; i < n; ++ i) if(abs(data[pivot][j]) < abs(data[i][j])) pivot = i;
                if(rank != pivot){
                    swap(data[rank], data[pivot]);
                    det *= -1;
                }
                if(abs(data[rank][j]) <= eps) continue;
                det *= data[rank][j];
                T inv = 1 / data[rank][j];
                for(auto i = rank + 1; i < n; ++ i) if(abs(data[i][j]) > eps){
                    T coef = data[i][j] * inv;
                    for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k];
                }
                ++ rank;
            }
            else{
                for(auto i = rank + 1; i < n; ++ i) while(data[i][j]){
                    T q;
                    if constexpr(is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>) q = data[rank][j] / data[i][j];
                    else q = data[rank][j].data / data[i][j].data;
                    if(q) for(auto k = j; k < m; ++ k) data[rank][k] -= q * data[i][k];
                    swap(data[rank], data[i]);
                    det *= -1;
                }
                if(rank == j) det *= data[rank][j];
                else det = T{0};
                if(data[rank][j]) ++ rank;
            }
            if(rank == n) break;
        }
        return {*this, det, rank};
    }
    // Assumes T is either a floating, integral, or a modular type.
    // If T is a floating type, O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
    // Otherwise, O(n * up_to * log(size)) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
    // Returns {REF matrix, determinant, rank}
    tuple<matrix, T, int> REF(int up_to = -1) const{
        return matrix(*this).inplace_REF(up_to);
    }
    // Assumes T is a field.
    // O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
    // Returns {REF matrix, determinant, rank}
    tuple<matrix &, T, int> inplace_REF_field(int up_to = -1){
        if(n == 0) return {*this, T{1}, 0};
        if(!~up_to) up_to = m;
        T det = T{1};
        int rank = 0;
        for(auto j = 0; j < up_to; ++ j){
            int pivot = -1;
            for(auto i = rank; i < n; ++ i) if(data[i][j] != T{0}){
                pivot = i;
                break;
            }
            if(!~pivot){
                det = T{0};
                continue;
            }
            if(rank != pivot){
                swap(data[rank], data[pivot]);
                det *= -1;
            }
            det *= data[rank][j];
            T inv = 1 / data[rank][j];
            for(auto i = rank + 1; i < n; ++ i) if(data[i][j] != T{0}){
                T coef = data[i][j] * inv;
                for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k];
            }
            ++ rank;
            if(rank == n) break;
        }
        return {*this, det, rank};
    }
    // Assumes T is a field.
    // O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications.
    // Returns {REF matrix, determinant, rank}
    tuple<matrix, T, int> REF_field(int up_to = -1) const{
        return matrix(*this).inplace_REF_field(up_to);
    }
    // Assumes T is a field.
    // O(n) divisions with O(n^3) additions, subtractions, and multiplications.
    optional<matrix> inverse() const{
        assert(n == m);
        if(n == 0) return *this;
        auto a = data;
        auto res = multiplicative_identity();
        for(auto j = 0; j < n; ++ j){
            int rank = j, pivot = -1;
            if constexpr(is_floating_point_v<T>){
                static const T eps = 1e-9;
                pivot = rank;
                for(auto i = rank + 1; i < n; ++ i) if(abs(a[pivot][j]) < abs(a[i][j])) pivot = i;
                if(abs(a[pivot][j]) <= eps) return {};
            }
            else{
                for(auto i = rank; i < n; ++ i) if(a[i][j] != T{0}){
                    pivot = i;
                    break;
                }
                if(!~pivot) return {};
            }
            swap(a[rank], a[pivot]), swap(res[rank], res[pivot]);
            T inv = 1 / a[rank][j];
            for(auto k = 0; k < n; ++ k) a[rank][k] *= inv, res[rank][k] *= inv;
            for(auto i = 0; i < n; ++ i){
                if constexpr(is_floating_point_v<T>){
                    static const T eps = 1e-9;
                    if(i != rank && abs(a[i][j]) > eps){
                        T d = a[i][j];
                        for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k];
                    }
                }
                else if(i != rank && a[i][j] != T{0}){
                    T d = a[i][j];
                    for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k];
                }
            }
        }
        return res;
    }
    // Assumes T is either a floating, integral, or a modular type.
    // If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
    // Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
    T determinant() const{
        assert(n == m);
        return get<1>(REF());
    }
    // Assumes T is a field.
    // O(n) divisions with O(n^3) additions, subtractions, and multiplications.
    T determinant_field() const{
        assert(n == m);
        return get<1>(REF_field());
    }
    // Assumes T is either a floating, integral, or a modular type.
    // If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
    // Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
    int rank() const{
        return get<2>(REF());
    }
    // Assumes T is a field.
    // O(n) divisions with O(n^3) additions, subtractions, and multiplications.
    int rank_field() const{
        return get<2>(REF_field());
    }
    // Regarding the matrix as a system of linear equations by separating first m-1 columns, find a solution of the linear equation.
    // Assumes T is a field
    // O(n * m^2)
    optional<vector<T>> find_a_solution() const{
        assert(m >= 1);
        auto [ref, _, rank] = REF_field(m - 1);
        for(auto i = rank; i < n; ++ i) if(ref[i][m - 1] != T{0}) return {};
        vector<T> res(m - 1);
        for(auto i = rank - 1; i >= 0; -- i){
            int pivot = 0;
            while(pivot < m - 1 && ref[i][pivot] == T{0}) ++ pivot;
            assert(pivot < m - 1);
            res[pivot] = ref[i][m - 1];
            for(auto j = pivot + 1; j < m - 1; ++ j) res[pivot] -= ref[i][j] * res[j];
            res[pivot] /= ref[i][pivot];
        }
        return res;
    }
    // O(n * 2^n)
    T permanent() const{
        assert(n <= 30 && n == m);
        T perm = n ? 0 : 1;
        vector<T> sum(n);
        for(auto order = 1; order < 1 << n; ++ order){
            int j = __lg(order ^ order >> 1 ^ order - 1 ^ order - 1 >> 1), sign = (order ^ order >> 1) & 1 << j ? 1 : -1;
            T prod = order & 1 ? -1 : 1;
            if((order ^ order >> 1) & 1 << j) for(auto i = 0; i < n; ++ i) prod *= sum[i] += data[i][j];
            else for(auto i = 0; i < n; ++ i) prod *= sum[i] -= data[i][j];
            perm += prod;
        }
        return perm * (n & 1 ? -1 : 1);
    }
    template<class output_stream>
    friend output_stream &operator<<(output_stream &out, const matrix &a){
        out << "\n";
        for(auto i = 0; i < a.n; ++ i){
            for(auto j = 0; j < a.m; ++ j) out << a[i][j] << " ";
            out << "\n";
        }
        return out;
    }
    matrix(int n, int m, T init_diagonal = T{0}, T init_off_diagonal = T{0}): n(n), m(m){
        assert(n >= 0 && m >= 0);
        data.assign(n, vector<T>(m, T{0}));
        for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] = i == j ? init_diagonal : init_off_diagonal;
    }
    matrix(int n, int m, const vector<vector<T>> &a): n(n), m(m), data(a){ }
    static matrix additive_identity(int n, int m){
        return matrix(n, m, T{0}, T{0});
    }
    static matrix multiplicative_identity(int n, int m){
        return matrix(n, m, T{1}, T{0});
    }
};
template<class T>
matrix<T> operator*(T c, matrix<T> a){
    for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) a[i][j] = c * a[i][j];
    return a;
}
// Multiply a row vector v on the left
template<class T>
vector<T> operator*(const vector<T> &v, const matrix<T> &a){
    assert(a.n == (int)size(v));
    vector<T> res(a.m, T{0});
    for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) res[j] += v[i] * a[i][j];
    return res;
}

void solve() {
    int K, n, m, q;
    cin >> K >> n >> m >> q;

    int layer = (n - 1) / K;
    vector<matrix<int>> vec(layer, matrix(K, K, inf, inf));
    for (int i = 0; i < m; ++i) {
        int u, v, w;
        cin >> u >> v >> w;
        vec[u / K][u % K][v % K] = min(vec[u / K][u % K][v % K], w);
    }

    // for (int i = 0; i < layer; ++i) {
    //     cout << vec[i] << endl;
    // }

    vector<vector<matrix<int>>> jmp({vec});
    for (int i = 1, p = 1; p << 1 <= layer; ++i, p <<= 1) {
        jmp.emplace_back(isz(jmp[i - 1]) - p, matrix(K, K, inf, inf));
        for (int j = 0; j + p < isz(jmp[i - 1]); ++j) {
            jmp[i][j] = jmp[i - 1][j] * jmp[i - 1][j + p];
            // cout << jmp[i][j] << endl;
        }
    }

    auto query = [&](int l, int r, int st, int en) -> int {
        int len = r - l, cnt = 0;
        matrix res(K, K, inf, inf);
        for (int i = 0; i < K; ++i) {
            res[i][i] = 0;
        }
        while (len) {
            if (len & 1) {
                res *= jmp[cnt][l];
                l += 1 << cnt;
            }
            len >>= 1, ++cnt;
        }
        return (res[st][en] == inf ? -1 : res[st][en]);
    };

    while (q--) {
        int u, v;
        cin >> u >> v;
        cout << query(u / K, v / K, u % K, v % K) << endl;
    }
}

signed main() {

#ifndef CDuongg
    if (fopen(taskname".inp", "r"))
        assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout));
#else
    freopen("bai3.inp", "r", stdin);
    freopen("bai3.out", "w", stdout);
    auto start = chrono::high_resolution_clock::now();
#endif

    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    int t = 1; //cin >> t;
    while(t--) solve();

#ifdef CDuongg
   auto end = chrono::high_resolution_clock::now();
   cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '=';
   cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl;
#endif

}
# 결과 실행 시간 메모리 Grader output
1 Correct 202 ms 75064 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 4 ms 1372 KB Output is correct
6 Correct 4 ms 1236 KB Output is correct
7 Correct 4 ms 1384 KB Output is correct
8 Correct 205 ms 75068 KB Output is correct
9 Correct 200 ms 74804 KB Output is correct
10 Correct 220 ms 74276 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 150 ms 59460 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 19 ms 1488 KB Output is correct
8 Correct 21 ms 1112 KB Output is correct
9 Correct 189 ms 75048 KB Output is correct
10 Correct 157 ms 50388 KB Output is correct
11 Correct 149 ms 59540 KB Output is correct
12 Correct 158 ms 49252 KB Output is correct
13 Correct 97 ms 26556 KB Output is correct
14 Correct 83 ms 28868 KB Output is correct
15 Correct 93 ms 25236 KB Output is correct
16 Correct 90 ms 25236 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 4 ms 1372 KB Output is correct
7 Correct 3 ms 1116 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 2 ms 980 KB Output is correct
10 Correct 176 ms 74752 KB Output is correct
11 Correct 124 ms 59384 KB Output is correct
12 Correct 130 ms 49984 KB Output is correct
13 Correct 136 ms 50216 KB Output is correct
14 Correct 126 ms 49736 KB Output is correct
15 Correct 74 ms 25200 KB Output is correct
16 Correct 72 ms 25196 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 4 ms 1372 KB Output is correct
7 Correct 3 ms 1116 KB Output is correct
8 Correct 3 ms 860 KB Output is correct
9 Correct 2 ms 980 KB Output is correct
10 Correct 176 ms 74752 KB Output is correct
11 Correct 124 ms 59384 KB Output is correct
12 Correct 130 ms 49984 KB Output is correct
13 Correct 136 ms 50216 KB Output is correct
14 Correct 126 ms 49736 KB Output is correct
15 Correct 74 ms 25200 KB Output is correct
16 Correct 72 ms 25196 KB Output is correct
17 Correct 146 ms 59720 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 0 ms 348 KB Output is correct
21 Correct 0 ms 348 KB Output is correct
22 Correct 0 ms 348 KB Output is correct
23 Correct 8 ms 1372 KB Output is correct
24 Correct 7 ms 1228 KB Output is correct
25 Correct 11 ms 860 KB Output is correct
26 Correct 9 ms 1068 KB Output is correct
27 Correct 183 ms 74868 KB Output is correct
28 Correct 142 ms 50252 KB Output is correct
29 Correct 143 ms 50460 KB Output is correct
30 Correct 138 ms 49732 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 202 ms 75064 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 0 ms 344 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 4 ms 1372 KB Output is correct
6 Correct 4 ms 1236 KB Output is correct
7 Correct 4 ms 1384 KB Output is correct
8 Correct 205 ms 75068 KB Output is correct
9 Correct 200 ms 74804 KB Output is correct
10 Correct 220 ms 74276 KB Output is correct
11 Correct 150 ms 59460 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 19 ms 1488 KB Output is correct
18 Correct 21 ms 1112 KB Output is correct
19 Correct 189 ms 75048 KB Output is correct
20 Correct 157 ms 50388 KB Output is correct
21 Correct 149 ms 59540 KB Output is correct
22 Correct 158 ms 49252 KB Output is correct
23 Correct 97 ms 26556 KB Output is correct
24 Correct 83 ms 28868 KB Output is correct
25 Correct 93 ms 25236 KB Output is correct
26 Correct 90 ms 25236 KB Output is correct
27 Correct 0 ms 348 KB Output is correct
28 Correct 1 ms 348 KB Output is correct
29 Correct 0 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 0 ms 348 KB Output is correct
32 Correct 4 ms 1372 KB Output is correct
33 Correct 3 ms 1116 KB Output is correct
34 Correct 3 ms 860 KB Output is correct
35 Correct 2 ms 980 KB Output is correct
36 Correct 176 ms 74752 KB Output is correct
37 Correct 124 ms 59384 KB Output is correct
38 Correct 130 ms 49984 KB Output is correct
39 Correct 136 ms 50216 KB Output is correct
40 Correct 126 ms 49736 KB Output is correct
41 Correct 74 ms 25200 KB Output is correct
42 Correct 72 ms 25196 KB Output is correct
43 Correct 146 ms 59720 KB Output is correct
44 Correct 1 ms 348 KB Output is correct
45 Correct 1 ms 348 KB Output is correct
46 Correct 0 ms 348 KB Output is correct
47 Correct 0 ms 348 KB Output is correct
48 Correct 0 ms 348 KB Output is correct
49 Correct 8 ms 1372 KB Output is correct
50 Correct 7 ms 1228 KB Output is correct
51 Correct 11 ms 860 KB Output is correct
52 Correct 9 ms 1068 KB Output is correct
53 Correct 183 ms 74868 KB Output is correct
54 Correct 142 ms 50252 KB Output is correct
55 Correct 143 ms 50460 KB Output is correct
56 Correct 138 ms 49732 KB Output is correct
57 Correct 189 ms 49352 KB Output is correct
58 Correct 206 ms 74868 KB Output is correct
59 Correct 162 ms 59740 KB Output is correct