Submission #1093531

#TimeUsernameProblemLanguageResultExecution timeMemory
1093531vjudge1Toll (BOI17_toll)C++17
100 / 100
220 ms75068 KiB
/* #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("avx2,fma,bmi,bmi2,sse4.2,popcnt,lzcnt") */ #include <bits/stdc++.h> #define taskname "" #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define i64 long long #define isz(x) (int)x.size() using namespace std; const int inf = 1e9; template<class T> struct matrix{ int n, m; vector<vector<T>> data; vector<T> &operator[](int i){ assert(0 <= i && i < n); return data[i]; } const vector<T> &operator[](int i) const{ assert(0 <= i && i < n); return data[i]; } matrix &inplace_slice(int il, int ir, int jl, int jr){ assert(0 <= il && il <= ir && ir <= n); assert(0 <= jl && jl <= jr && jr <= m); n = ir - il, m = jr - jl; if(il > 0) for(auto i = 0; i < n; ++ i) swap(data[i], data[il + i]); data.resize(n); for(auto &row: data){ row.erase(row.begin(), row.begin() + jl); row.resize(m); } return *this; } matrix slice(int il, int ir, int jl, int jr) const{ return matrix(*this).inplace_slice(il, ir, jl, jr); } matrix &inplace_row_slice(int il, int ir){ assert(0 <= il && il <= ir && ir <= n); n = ir - il; if(il > 0) for(auto i = 0; i < n; ++ i) swap(data[i], data[il + i]); data.resize(n); return *this; } matrix row_slice(int il, int ir) const{ return matrix(*this).inplace_row_slice(il, ir); } matrix &inplace_column_slice(int jl, int jr){ assert(0 <= jl && jl <= jr && jr <= m); m = jr - jl; for(auto &row: data){ row.erase(row.begin(), row.begin() + jl); row.resize(m); } return *this; } matrix column_slice(int jl, int jr) const{ return matrix(*this).inplace_column_slice(jl, jr); } bool operator==(const matrix &a) const{ assert(n == a.n && m == a.m); return data == a.data; } bool operator!=(const matrix &a) const{ assert(n == a.n && m == a.m); return data != a.data; } matrix &operator+=(const matrix &a){ assert(n == a.n && m == a.m); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a[i][j]; return *this; } matrix operator+(const matrix &a) const{ return matrix(*this) += a; } matrix &operator-=(const matrix &a){ assert(n == a.n && m == a.m); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] -= a[i][j]; return *this; } matrix operator-(const matrix &a) const{ return matrix(*this) -= a; } matrix operator*=(const matrix &a){ assert(m == a.n); int l = a.m; matrix res(n, l, inf, inf); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) for(auto k = 0; k < l; ++ k) res[i][k] = min(res[i][k], data[i][j] + a[j][k]); return *this = res; } matrix operator*(const matrix &a) const{ return matrix(*this) *= a; } matrix &operator*=(T c){ for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] *= c; return *this; } matrix operator*(T c) const{ return matrix(*this) *= c; } template<class U, typename enable_if<is_integral<U>::value>::type* = nullptr> matrix &inplace_power(U e){ assert(n == m && e >= 0); matrix res(n, n, T{1}); for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this; return *this = res; } template<class U> matrix power(U e) const{ return matrix(*this).inplace_power(e); } matrix &inplace_transpose(){ assert(n == m); for(auto i = 0; i < n; ++ i) for(auto j = i + 1; j < n; ++ j) swap(data[i][j], data[j][i]); return *this; } matrix transpose() const{ if(n == m) return matrix(*this).inplace_transpose(); matrix res(m, n); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[j][i] = data[i][j]; return res; } vector<T> operator*(const vector<T> &v) const{ assert(m == (int)v.size()); vector<T> res(n, T{0}); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[i] += data[i][j] * v[j]; return res; } // Assumes T is either a floating, integral, or a modular type. // If T is a floating type, O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications. // Otherwise, O(n * up_to * log(size)) divisions with O(n * m * up_to) additions, subtractions, and multiplications. // Returns {REF matrix, determinant, rank} tuple<matrix &, T, int> inplace_REF(int up_to = -1){ if(n == 0) return {*this, T{1}, 0}; if(!~up_to) up_to = m; T det = 1; int rank = 0; for(auto j = 0; j < up_to; ++ j){ if constexpr(is_floating_point_v<T>){ static const T eps = 1e-9; int pivot = rank; for(auto i = rank + 1; i < n; ++ i) if(abs(data[pivot][j]) < abs(data[i][j])) pivot = i; if(rank != pivot){ swap(data[rank], data[pivot]); det *= -1; } if(abs(data[rank][j]) <= eps) continue; det *= data[rank][j]; T inv = 1 / data[rank][j]; for(auto i = rank + 1; i < n; ++ i) if(abs(data[i][j]) > eps){ T coef = data[i][j] * inv; for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k]; } ++ rank; } else{ for(auto i = rank + 1; i < n; ++ i) while(data[i][j]){ T q; if constexpr(is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>) q = data[rank][j] / data[i][j]; else q = data[rank][j].data / data[i][j].data; if(q) for(auto k = j; k < m; ++ k) data[rank][k] -= q * data[i][k]; swap(data[rank], data[i]); det *= -1; } if(rank == j) det *= data[rank][j]; else det = T{0}; if(data[rank][j]) ++ rank; } if(rank == n) break; } return {*this, det, rank}; } // Assumes T is either a floating, integral, or a modular type. // If T is a floating type, O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications. // Otherwise, O(n * up_to * log(size)) divisions with O(n * m * up_to) additions, subtractions, and multiplications. // Returns {REF matrix, determinant, rank} tuple<matrix, T, int> REF(int up_to = -1) const{ return matrix(*this).inplace_REF(up_to); } // Assumes T is a field. // O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications. // Returns {REF matrix, determinant, rank} tuple<matrix &, T, int> inplace_REF_field(int up_to = -1){ if(n == 0) return {*this, T{1}, 0}; if(!~up_to) up_to = m; T det = T{1}; int rank = 0; for(auto j = 0; j < up_to; ++ j){ int pivot = -1; for(auto i = rank; i < n; ++ i) if(data[i][j] != T{0}){ pivot = i; break; } if(!~pivot){ det = T{0}; continue; } if(rank != pivot){ swap(data[rank], data[pivot]); det *= -1; } det *= data[rank][j]; T inv = 1 / data[rank][j]; for(auto i = rank + 1; i < n; ++ i) if(data[i][j] != T{0}){ T coef = data[i][j] * inv; for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k]; } ++ rank; if(rank == n) break; } return {*this, det, rank}; } // Assumes T is a field. // O(up_to) divisions with O(n * m * up_to) additions, subtractions, and multiplications. // Returns {REF matrix, determinant, rank} tuple<matrix, T, int> REF_field(int up_to = -1) const{ return matrix(*this).inplace_REF_field(up_to); } // Assumes T is a field. // O(n) divisions with O(n^3) additions, subtractions, and multiplications. optional<matrix> inverse() const{ assert(n == m); if(n == 0) return *this; auto a = data; auto res = multiplicative_identity(); for(auto j = 0; j < n; ++ j){ int rank = j, pivot = -1; if constexpr(is_floating_point_v<T>){ static const T eps = 1e-9; pivot = rank; for(auto i = rank + 1; i < n; ++ i) if(abs(a[pivot][j]) < abs(a[i][j])) pivot = i; if(abs(a[pivot][j]) <= eps) return {}; } else{ for(auto i = rank; i < n; ++ i) if(a[i][j] != T{0}){ pivot = i; break; } if(!~pivot) return {}; } swap(a[rank], a[pivot]), swap(res[rank], res[pivot]); T inv = 1 / a[rank][j]; for(auto k = 0; k < n; ++ k) a[rank][k] *= inv, res[rank][k] *= inv; for(auto i = 0; i < n; ++ i){ if constexpr(is_floating_point_v<T>){ static const T eps = 1e-9; if(i != rank && abs(a[i][j]) > eps){ T d = a[i][j]; for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k]; } } else if(i != rank && a[i][j] != T{0}){ T d = a[i][j]; for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k]; } } } return res; } // Assumes T is either a floating, integral, or a modular type. // If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications. // Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications. T determinant() const{ assert(n == m); return get<1>(REF()); } // Assumes T is a field. // O(n) divisions with O(n^3) additions, subtractions, and multiplications. T determinant_field() const{ assert(n == m); return get<1>(REF_field()); } // Assumes T is either a floating, integral, or a modular type. // If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications. // Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications. int rank() const{ return get<2>(REF()); } // Assumes T is a field. // O(n) divisions with O(n^3) additions, subtractions, and multiplications. int rank_field() const{ return get<2>(REF_field()); } // Regarding the matrix as a system of linear equations by separating first m-1 columns, find a solution of the linear equation. // Assumes T is a field // O(n * m^2) optional<vector<T>> find_a_solution() const{ assert(m >= 1); auto [ref, _, rank] = REF_field(m - 1); for(auto i = rank; i < n; ++ i) if(ref[i][m - 1] != T{0}) return {}; vector<T> res(m - 1); for(auto i = rank - 1; i >= 0; -- i){ int pivot = 0; while(pivot < m - 1 && ref[i][pivot] == T{0}) ++ pivot; assert(pivot < m - 1); res[pivot] = ref[i][m - 1]; for(auto j = pivot + 1; j < m - 1; ++ j) res[pivot] -= ref[i][j] * res[j]; res[pivot] /= ref[i][pivot]; } return res; } // O(n * 2^n) T permanent() const{ assert(n <= 30 && n == m); T perm = n ? 0 : 1; vector<T> sum(n); for(auto order = 1; order < 1 << n; ++ order){ int j = __lg(order ^ order >> 1 ^ order - 1 ^ order - 1 >> 1), sign = (order ^ order >> 1) & 1 << j ? 1 : -1; T prod = order & 1 ? -1 : 1; if((order ^ order >> 1) & 1 << j) for(auto i = 0; i < n; ++ i) prod *= sum[i] += data[i][j]; else for(auto i = 0; i < n; ++ i) prod *= sum[i] -= data[i][j]; perm += prod; } return perm * (n & 1 ? -1 : 1); } template<class output_stream> friend output_stream &operator<<(output_stream &out, const matrix &a){ out << "\n"; for(auto i = 0; i < a.n; ++ i){ for(auto j = 0; j < a.m; ++ j) out << a[i][j] << " "; out << "\n"; } return out; } matrix(int n, int m, T init_diagonal = T{0}, T init_off_diagonal = T{0}): n(n), m(m){ assert(n >= 0 && m >= 0); data.assign(n, vector<T>(m, T{0})); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] = i == j ? init_diagonal : init_off_diagonal; } matrix(int n, int m, const vector<vector<T>> &a): n(n), m(m), data(a){ } static matrix additive_identity(int n, int m){ return matrix(n, m, T{0}, T{0}); } static matrix multiplicative_identity(int n, int m){ return matrix(n, m, T{1}, T{0}); } }; template<class T> matrix<T> operator*(T c, matrix<T> a){ for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) a[i][j] = c * a[i][j]; return a; } // Multiply a row vector v on the left template<class T> vector<T> operator*(const vector<T> &v, const matrix<T> &a){ assert(a.n == (int)size(v)); vector<T> res(a.m, T{0}); for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) res[j] += v[i] * a[i][j]; return res; } void solve() { int K, n, m, q; cin >> K >> n >> m >> q; int layer = (n - 1) / K; vector<matrix<int>> vec(layer, matrix(K, K, inf, inf)); for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; vec[u / K][u % K][v % K] = min(vec[u / K][u % K][v % K], w); } // for (int i = 0; i < layer; ++i) { // cout << vec[i] << endl; // } vector<vector<matrix<int>>> jmp({vec}); for (int i = 1, p = 1; p << 1 <= layer; ++i, p <<= 1) { jmp.emplace_back(isz(jmp[i - 1]) - p, matrix(K, K, inf, inf)); for (int j = 0; j + p < isz(jmp[i - 1]); ++j) { jmp[i][j] = jmp[i - 1][j] * jmp[i - 1][j + p]; // cout << jmp[i][j] << endl; } } auto query = [&](int l, int r, int st, int en) -> int { int len = r - l, cnt = 0; matrix res(K, K, inf, inf); for (int i = 0; i < K; ++i) { res[i][i] = 0; } while (len) { if (len & 1) { res *= jmp[cnt][l]; l += 1 << cnt; } len >>= 1, ++cnt; } return (res[st][en] == inf ? -1 : res[st][en]); }; while (q--) { int u, v; cin >> u >> v; cout << query(u / K, v / K, u % K, v % K) << endl; } } signed main() { #ifndef CDuongg if (fopen(taskname".inp", "r")) assert(freopen(taskname".inp", "r", stdin)), assert(freopen(taskname".out", "w", stdout)); #else freopen("bai3.inp", "r", stdin); freopen("bai3.out", "w", stdout); auto start = chrono::high_resolution_clock::now(); #endif ios_base::sync_with_stdio(false); cin.tie(nullptr); int t = 1; //cin >> t; while(t--) solve(); #ifdef CDuongg auto end = chrono::high_resolution_clock::now(); cout << "\n"; for(int i = 1; i <= 100; ++i) cout << '='; cout << "\nExecution time: " << chrono::duration_cast<chrono::milliseconds> (end - start).count() << "[ms]" << endl; #endif }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...