# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
1090602 | Octa_pe_info | Commuter Pass (JOI18_commuter_pass) | C++14 | 0 ms | 0 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#include <climits>
#include <bits/stdc++.h>
using namespace std;
// Structure to represent an edge in the graph
struct Edge {
long long to;
long long cost;
};
// Custom comparator for the priority queue
struct State {
long long node;
long long dist;
bool operator>(const State& other) const {
return dist > other.dist;
}
};
const long long INF = LLONG_MAX;
// Function to find a shortest path from S to T and return the edges used
vector<pair<long long, long long>> find_shortest_path(long long S, long long T, long long n, vector<vector<Edge>>& graph) {
vector<long long> dist(n + 1, INF);
vector<long long> parent(n + 1, -1);
priority_queue<State, vector<State>, greater<State>> pq;
dist[S] = 0;
pq.push({S, 0});
while (!pq.empty()) {
State current = pq.top();
pq.pop();
long long u = current.node;
if (current.dist > dist[u])
continue;
for (Edge& edge : graph[u]) {
long long v = edge.to;
long long new_dist = dist[u] + edge.cost;
if (new_dist < dist[v]) {
dist[v] = new_dist;
parent[v] = u;
pq.push({v, new_dist});
}
}
}
// Reconstruct the path from S to T
vector<pair<long long, long long>> path_edges;
long long node = T;
if (parent[node] == -1) {
// No path found
return path_edges;
}
while (parent[node] != -1) {
long long u = parent[node];
long long v = node;
path_edges.push_back({u, v});
node = u;
}
// The path is from T to S, reverse it
reverse(path_edges.begin(), path_edges.end());
return path_edges;
}
// Function to calculate the minimum cost from U to V using the modified graph
long long calculate_min_cost(long long U, long long V, long long n, vector<vector<Edge>>& graph) {
vector<long long> dist(n + 1, INF);
priority_queue<State, vector<State>, greater<State>> pq;
dist[U] = 0;
pq.push({U, 0});
while (!pq.empty()) {
State current = pq.top();
pq.pop();
long long u = current.node;
if (current.dist > dist[u])
continue;
for (Edge& edge : graph[u]) {
long long v = edge.to;
long long new_dist = dist[u] + edge.cost;
if (new_dist < dist[v]) {
dist[v] = new_dist;
pq.push({v, new_dist});
}
}
}
return dist[V];
}
long long main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
long long N, M;
cin >> N >> M;
long long S, T;
cin >> S >> T;
long long U, V;
cin >> U >> V;
vector<vector<Edge>> graph(N + 1);
// Read the graph
for (long long i = 0; i < M; ++i) {
long long A, B;
long long C;
cin >> A >> B >> C;
graph[A].push_back({B, C});
graph[B].push_back({A, C});
}
// Find a shortest path from S to T
vector<pair<long long, long long>> shortest_path_edges = find_shortest_path(S, T, N, graph);
if (shortest_path_edges.empty()) {
// No path from S to T
cout << "0\n";
return 0;
}
// Create a modified graph where edges along the path have cost zero
vector<vector<Edge>> modified_graph = graph;
// Create a set for quick lookup
set<pair<long long, long long>> path_edge_set;
for (auto& edge : shortest_path_edges) {
long long u = edge.first;
long long v = edge.second;
path_edge_set.insert({u, v});
path_edge_set.insert({v, u}); // Since the graph is undirected
}
// Modify the edge costs along the path to zero
for (long long u = 1; u <= N; ++u) {
for (Edge& edge : modified_graph[u]) {
long long v = edge.to;
if (path_edge_set.count({u, v})) {
edge.cost = 0;
}
}
}
// Calculate the minimum cost from U to V using the modified graph
long long min_cost = calculate_min_cost(U, V, N, modified_graph);
cout << min_cost << '\n';
return 0;
}