#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <math.h>
#include <bitset>
#include <vector>
#include <string>
#include <cstdio>
#include <cctype>
#include <numeric>
#include <fstream>
#include <sstream>
#include <cstdlib>
#include <iomanip>
#include <cassert>
#include <cstring>
#include <stdio.h>
#include <string.h>
#include <iterator>
#include <iostream>
#include <algorithm>
#include <strings.h>
#include <functional>
#include <unordered_set>
#include <unordered_map>
#define fore(i, a, b) for (int i = (a), i##_last = (b); i < i##_last; ++i)
#define fort(i, a, b) for (int i = (a), i##_last = (b); i <= i##_last; ++i)
#define ford(i, a, b) for (int i = (a), i##_last = (b); i >= i##_last; --i)
#define fi first
#define se second
#define pb push_back
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
using namespace std;
using ll = long long;
using ld = long double;
template<class A, class B> bool maxi(A &a, const B &b) {return (a < b) ? (a = b, true):false;};
template<class A, class B> bool mini(A &a, const B &b) {return (a > b) ? (a = b, true):false;};
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<vi> vvi;
typedef vector<vii> vvii;
class FenwickTree {
private:
int n;
std::vector<int> bit;
public:
FenwickTree(): n(0) {};
FenwickTree(const int n): n(n), bit(n + 1) {};
void resize(const int newSize) {
n = newSize;
bit.resize(newSize + 1);
}
void reload() {
for (int i = 1; i <= n; ++i)
bit[i] = 0;
}
void update(int q, const int val) {
for (++q; q <= n; q += q & -q)
bit[q] += val;
}
int query(int q) const {
int result = 0;
for (++q; q; q -= q & -q)
result += bit[q];
return result;
};
int query(const int l, const int r) const {
return query(r) - query(l - 1);
};
};
constexpr int MAX_N = 50'004, MAX_K = 31, INF = 0X3F3F3F3F;
const double EPSILON = 1E-9;
bool checkSmaller(const double l, const double r) {
return l + EPSILON < r;
}
bool checkEqual(const double l, const double r) {
return fabs(r - l) <= EPSILON;
}
bool checkSmallerOrEqual(const double l, const double r) {
return checkEqual(l, r) || checkSmaller(l, r);
}
signed nx, ny, bound, before[MAX_N], under[MAX_N], above[MAX_N], height[MAX_N];
bool visited[MAX_N], possible[MAX_K], newlyPossible[MAX_K];
vi vx, vy, rows[MAX_N], columns[MAX_N], graph[MAX_N];
int N, K, x[MAX_N], y[MAX_N], k[MAX_N];
double upperBound;
FenwickTree bit;
double calculateSquare(const double t) {
return t * t;
}
double calculateDistance(const int u, const int v) {
return sqrt(calculateSquare(vx[x[u]] - vx[x[v]]) + calculateSquare(vy[y[u]] - vy[y[v]]));
}
int getSubtraction(int x, const int y) {
if ((x -= y) < 0)
x += K;
return x;
}
bool check(const double limit) {
set<int> positions;
upperBound = limit;
fore(i, 0, N) {
graph[i].clear();
visited[i] = false;
}
for (int g = 0, j = 0; j < nx; ++j) {
for (; checkSmaller(limit, vx[j] - vx[g]); ++g);
under[j] = above[j] = 0;
before[j] = g;
}
bit.reload();
for (int l = 0, i = 0, r = 0, newHeight; i < ny; ++i) {
for (; r < ny && checkSmallerOrEqual(vy[r] - vy[i], limit); ++r)
for (const int &z : rows[r]) {
const int &p = x[z];
for (; y[columns[p][above[p]]] <= r; ++above[p]);
--above[p];
newHeight = above[p] - under[p] + 1;
bit.update(p, newHeight);
height[p] = newHeight;
positions.insert(p);
}
for (; checkSmaller(limit, vy[i] - vy[l]); ++l)
for (const int &z : rows[l]) {
const int &p = x[z];
for (; y[columns[p][under[p]]] <= l; ++under[p]);
newHeight = above[p] - under[p] + 1;
bit.update(p, newHeight);
height[p] = newHeight;
if (newHeight == 0)
positions.erase(p);
}
for (const int &u : rows[i]) {
const int &t = x[u];
if (bit.query(before[t], t) > bound)
return true;
for (set<int>::iterator e = positions.lower_bound(before[t]); e != positions.end(); ++e) {
const auto p = *e;
if (p > t)
break;
fort(z, under[p], above[p]) {
const int &v = columns[p][z];
if (u == v || (x[u] == x[v] && y[v] < y[u]))
continue;
if (checkSmallerOrEqual(calculateDistance(u, v), upperBound)) {
graph[u].pb(v);
graph[v].pb(u);
}
}
}
}
}
queue<int> q;
fore(u, 0, N) {
if (visited[u])
continue;
fore(k, 0, K)
possible[k] = false;
q.push(u);
visited[u] = true;
for (; !q.empty(); q.pop()) {
const int &u = q.front();
fore(t, 0, K)
newlyPossible[t] = possible[t] || possible[getSubtraction(t, k[u])];
fore(t, 0, K)
possible[t] = newlyPossible[t];
possible[k[u]] = true;
for (const int &v : graph[u]) {
if (visited[v])
continue;
visited[v] = true;
q.push(v);
}
}
if (possible[0])
return true;
}
return false;
}
signed main() {
double low = 0, middle, high = 2E9;
#ifdef LOCAL
freopen("input.INP", "r", stdin);
#endif // LOCAL
cin.tie(0) -> sync_with_stdio(0);
cout.tie(0);
cout.precision(3);
cout.setf(ios::fixed, ios::floatfield);
cin >> N >> K;
fore(i, 0, N) {
cin >> x[i] >> y[i] >> k[i];
vx.pb(x[i]);
vy.pb(y[i]);
k[i] %= K;
}
sort(all(vx));
sort(all(vy));
vx.erase(unique(all(vx)), vx.end());
vy.erase(unique(all(vy)), vy.end());
nx = vx.size();
ny = vy.size();
bit.resize(nx);
fore(i, 0, N) {
x[i] = lower_bound(all(vx), x[i]) - vx.begin();
y[i] = lower_bound(all(vy), y[i]) - vy.begin();
rows[y[i]].pb(i);
}
fore(i, 0, ny)
for (const auto &z : rows[i])
columns[x[z]].push_back(z);
x[N] = y[N] = INF;
fore(j, 0, nx)
columns[j].pb(N);
bound = 8 * K;
for (; low + 1E-5 < high;) {
middle = (low + high) / 2;
if (check(middle))
high = middle;
else
low = middle;
}
cout << high << '\n';
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3928 KB |
Output is correct |
2 |
Correct |
2 ms |
3932 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
2 ms |
3932 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
3992 KB |
Output is correct |
2 |
Correct |
9 ms |
4184 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
8 ms |
4264 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3928 KB |
Output is correct |
2 |
Correct |
6 ms |
4308 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
8 ms |
4188 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3984 KB |
Output is correct |
2 |
Correct |
11 ms |
4188 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
6 ms |
4184 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
229 ms |
7676 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3928 KB |
Output is correct |
2 |
Correct |
764 ms |
16080 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
737 ms |
15268 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3928 KB |
Output is correct |
2 |
Correct |
649 ms |
12872 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3928 KB |
Output is correct |
2 |
Correct |
690 ms |
14080 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3928 KB |
Output is correct |
2 |
Correct |
718 ms |
14444 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
3988 KB |
Output is correct |
2 |
Correct |
652 ms |
10968 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
3932 KB |
Output is correct |
2 |
Correct |
656 ms |
11484 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
576 ms |
11644 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
629 ms |
11712 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3988 KB |
Output is correct |
2 |
Correct |
622 ms |
10956 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
2 ms |
3932 KB |
Output is correct |
2 |
Correct |
608 ms |
10816 KB |
Output is correct |