Submission #1083867

# Submission time Handle Problem Language Result Execution time Memory
1083867 2024-09-04T11:19:36 Z SamueleVid Catfish Farm (IOI22_fish) C++17
18 / 100
1000 ms 2097152 KB
#include <bits/stdc++.h>
using namespace std;
#define ll long long

constexpr int MAXN = 1e5 + 5;
constexpr int PW = 512;

ll sum_tutto(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    ll sum = 0;
    for (auto x : W) sum += x;
    return sum;
}

ll res_minore_di_due(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    if (N == 2) {
        // massimo tra 0 e 1    
        ll one = 0;
        ll zero = 0;
        for (int i = 0; i < M; i ++) {
            if (X[i] == 0) zero += W[i];
            else one += W[i];
        }

        return max(one, zero);
    }

    // altrimenti piazza una riga in 2 e poi prendi prefisso maggiore piazzando in 1
    
    ll sum = 0;
    for (int i = 0; i < M; i ++) {
        if (X[i] == 1) sum += W[i];
    }

    vector<vector<ll>> pos(2, vector<ll>(N + 5, 0));

    for (int i = 0; i < M; i ++) {
        pos[X[i]][Y[i]] += W[i];
    }

    ll best_res = sum;

    ll sum_zero = 0;
    ll sum_uno = 0;
    for (int i = 0; i < N + 5; i ++) {
        sum_zero += pos[0][i];
        sum_uno += pos[1][i];
        best_res = max(best_res, sum - sum_uno + sum_zero);
    }

    return best_res;
}

ll res_y_zero(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    vector<vector<ll>> dp(2, vector<ll>(N + 5)); // posso prendere a sx o no, posizione

    vector<ll> grid(N + 5);
    for (int i = 0; i < M; i ++) grid[X[i]] = W[i];

    for (int i = N - 1; i >= 0; i --) {
        dp[0][i] = dp[1][i + 1];
        dp[0][i] = max(dp[0][i], dp[0][i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 2] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[1][i + 3] + grid[i + 1]);
        dp[0][i] = max(dp[0][i], dp[0][i + 3] + grid[i + 1]);

        if (i != 0) {
            dp[1][i] = dp[1][i + 1];
            dp[1][i] = max(dp[1][i], dp[0][i + 1] + grid[i - 1]);
            dp[1][i] = max(dp[1][i], dp[0][i + 2] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[1][i + 3] + grid[i - 1] + grid[i + 1]); 
            dp[1][i] = max(dp[1][i], dp[0][i + 3] + grid[i - 1] + grid[i + 1]); 
        }
    }

    ll best_res = 0;
    for (int i = 0; i <= N; i ++) {
        best_res = max(best_res, dp[0][i]);
        best_res = max(best_res, dp[1][i]);
    }
    return best_res;
}

ll cubic(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
                grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    for (int i = N - 1; i >= 0; i --) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {
                // quanto mi alzo
                for (int dxdx = 0; dxdx <= MAXY; dxdx ++) {
 
                    ll preso = -ps_grid[i][min(dx, y)];
                    if (y > max(dx, dxdx)) {
                        preso += ps_grid[i + 1][y] - ps_grid[i + 1][max(dx, dxdx)];
                    }
                    if (i > 0) {
                        preso += ps_grid[i - 1][y];
                        // cout << " e poi si aggiunge a sx " << ps_grid[i - 1][y] << '\n';
                    }

                    // cout << "preso : " << preso << '\n';
                    // cout << "new value : " << dp[i + 1][dx][dxdx] + preso << '\n';

                    dp[i][y][dx] = max(dp[i][y][dx], dp[i + 1][dx][dxdx] + preso);
                }
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


struct segment {
    vector<ll> seg;

    segment() {
        seg.assign(2 * PW, 0);
    }

    void update(int x, ll d) {
        x += PW;
        while (x >= 1) {
            seg[x] = max(seg[x], d);
            x /= 2;
        }
    }

    ll query(int l, int r) {
        l += PW; r += PW;
        ll res = 0;
        while (l <= r) {
            if (l % 2 == 1) {
                res = max(res, seg[l]);
                l ++;
            }
            if (r % 2 == 0) {
                res = max(res, seg[r]);
                r --;
            }
            l /= 2; r /= 2;
        }
        return res;
    }
};

ll cubic_seg(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    // i, quanto lo alzo, quanto era alzato a destra
    // int MAXY = min(N, 9);
    int MAXY = N;
    ll dp[N + 5][MAXY + 5][MAXY + 5]; 

    segment seg_no_ps[N + 5][MAXY + 5];
    segment seg_ps[N + 5][MAXY + 5];

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            for (int k = 0; k < MAXY + 5; k ++) {
                dp[i][j][k] = 0;
            }
        }
    }

    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
            seg_no_ps[i][j] = segment();
            seg_ps[i][j] = segment();
        }
    }

    ll grid[N + 5][MAXY + 5];
    for (int i = 0; i < N + 5; i ++) {
        for (int j = 0; j < MAXY + 5; j ++) {
                grid[i][j] = 0;
        }
    }

    for (int i = 0; i < M; i ++) grid[X[i]][Y[i]] = W[i];

    ll ps_grid[N + 5][MAXY + 5]; // 1 based per le Y

    for (int i = 0; i < N + 5; i ++) {
        ps_grid[i][0] = 0;
        for (int j = 0; j < MAXY + 4; j ++) {
            ps_grid[i][j + 1] = ps_grid[i][j] + grid[i][j];
        }
    }

    // cout << "N, MAXY : " << N << " " << MAXY << '\n';

    // cout << "grid : " << '\n';
    // for (int i = 0; i < N + 5; i ++) {
    //     for (int j = 0; j < MAXY + 5; j ++) {
    //         cout << grid[i][j] << " ";
    //     }
    //     cout << '\n';
    // }
    // cout << "ps_grid " << '\n';
    // for (int i = 0; i < N + 5; i ++) {
    //     for (int j = 0; j < MAXY + 5; j ++) {
    //         cout << ps_grid[i][j] << " ";
    //     }
    //     cout << '\n';
    // }

    for (int i = N - 1; i >= 0; i --) {
        for (int y = 0; y <= MAXY; y ++) {
            for (int dx = 0; dx <= MAXY; dx ++) {

                // cout << "---- i, y, dx : " << i << " " << y << " " << dx << '\n';

                ll preso = -ps_grid[i][min(dx, y)];
                if (i > 0) preso += ps_grid[i - 1][y];

                // cout << "preso : " << preso << '\n';
                // cout << "vedo quelli " << i + 1 << " " << dx << " : " << '\n';
                // for (auto x : seg_no_ps[i + 1][dx].seg) cout << x << " ";
                // cout << '\n';
                // for (auto x : seg_ps[i + 1][dx].seg) cout << x << " ";
                // cout << '\n';
                
                // dxdx a sinistra di dx;
                ll left_of_dx = seg_no_ps[i + 1][dx].query(0, dx) + ps_grid[i + 1][max(y, dx)] - ps_grid[i + 1][dx];
                // cout << "reale massimo no ps da 0 a " << dx << " : " << seg_no_ps[i + 1][dx].query(0, dx) << '\n';

                // dxdx a destra di dx;
                ll right_of_dx_left_of_y = 0;
                if (y > dx) {
                    right_of_dx_left_of_y = seg_ps[i + 1][dx].query(dx, y) + ps_grid[i + 1][y];
                }

                ll right_of_dx_right_of_y = seg_no_ps[i + 1][dx].query(max(dx, y), MAXY);

                // cout << "left_of_dx -> " << left_of_dx << '\n';
                // cout << "right_of_dx_left_of_y -> " << right_of_dx_left_of_y << '\n';
                // cout << "right_of_dx_right_of_y -> " << right_of_dx_right_of_y << '\n';

                dp[i][y][dx] = max(dp[i][y][dx], left_of_dx + preso);
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_left_of_y + preso);
                dp[i][y][dx] = max(dp[i][y][dx], right_of_dx_right_of_y + preso);

                // cout << "aggiungo nei seg no ps " << i << ", " << y << " a pos " << dx << " : " << dp[i][y][dx] << " e nei seg ps " << dp[i][y][dx] - ps_grid[i][dx] << '\n';

                seg_no_ps[i][y].update(dx, dp[i][y][dx]);
                seg_ps[i][y].update(dx, dp[i][y][dx] - ps_grid[i][dx]);
                
            }
        }
    }

    ll res = 0;
    for (int i = 0; i < N; i ++) {
        for (int y = 0; y < MAXY; y ++) {
            for (int dx = 0; dx < MAXY; dx ++) {
                res = max(res, dp[i][y][dx]);
            }
        }
    }

    return res;
}


ll max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    bool all_even = 1;
    for (auto x : X) if (x % 2) all_even = 0;
    if (all_even) return sum_tutto(N, M, X, Y, W);

    bool minore_di_due = 1;
    for (auto x : X) if (x >= 2) minore_di_due = 0;
    if (minore_di_due) return res_minore_di_due(N, M, X, Y, W);

    bool y_zero = 1;
    for (auto y : Y) if (y > 0) y_zero = 0;
    if (y_zero) return res_y_zero(N, M, X, Y, W);

    return cubic_seg(N, M, X, Y, W);
}
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4580 KB Output is correct
2 Correct 21 ms 5456 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 58 ms 17236 KB Output is correct
6 Correct 60 ms 17488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 62 ms 10908 KB Output is correct
3 Correct 48 ms 13272 KB Output is correct
4 Correct 16 ms 4696 KB Output is correct
5 Correct 17 ms 5568 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 0 ms 436 KB Output is correct
9 Correct 1 ms 344 KB Output is correct
10 Correct 0 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 16 ms 6744 KB Output is correct
13 Correct 19 ms 8024 KB Output is correct
14 Correct 16 ms 6744 KB Output is correct
15 Correct 18 ms 7520 KB Output is correct
16 Correct 18 ms 6848 KB Output is correct
17 Correct 19 ms 7516 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 2648 KB Output is correct
3 Correct 13 ms 5228 KB Output is correct
4 Correct 8 ms 4696 KB Output is correct
5 Correct 20 ms 7880 KB Output is correct
6 Correct 35 ms 7232 KB Output is correct
7 Correct 21 ms 7876 KB Output is correct
8 Correct 18 ms 7772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1624 KB Output is correct
2 Correct 2 ms 3164 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 1372 KB Output is correct
9 Correct 465 ms 416756 KB Output is correct
10 Execution timed out 1109 ms 1722636 KB Time limit exceeded
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1624 KB Output is correct
2 Correct 2 ms 3164 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 1372 KB Output is correct
9 Correct 465 ms 416756 KB Output is correct
10 Execution timed out 1109 ms 1722636 KB Time limit exceeded
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1624 KB Output is correct
2 Correct 2 ms 3164 KB Output is correct
3 Correct 1 ms 344 KB Output is correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 1372 KB Output is correct
9 Correct 465 ms 416756 KB Output is correct
10 Execution timed out 1109 ms 1722636 KB Time limit exceeded
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 2 ms 2648 KB Output is correct
3 Correct 13 ms 5228 KB Output is correct
4 Correct 8 ms 4696 KB Output is correct
5 Correct 20 ms 7880 KB Output is correct
6 Correct 35 ms 7232 KB Output is correct
7 Correct 21 ms 7876 KB Output is correct
8 Correct 18 ms 7772 KB Output is correct
9 Execution timed out 1030 ms 2097152 KB Time limit exceeded
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 16 ms 4580 KB Output is correct
2 Correct 21 ms 5456 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 58 ms 17236 KB Output is correct
6 Correct 60 ms 17488 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 62 ms 10908 KB Output is correct
9 Correct 48 ms 13272 KB Output is correct
10 Correct 16 ms 4696 KB Output is correct
11 Correct 17 ms 5568 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 436 KB Output is correct
15 Correct 1 ms 344 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 16 ms 6744 KB Output is correct
19 Correct 19 ms 8024 KB Output is correct
20 Correct 16 ms 6744 KB Output is correct
21 Correct 18 ms 7520 KB Output is correct
22 Correct 18 ms 6848 KB Output is correct
23 Correct 19 ms 7516 KB Output is correct
24 Correct 0 ms 348 KB Output is correct
25 Correct 2 ms 2648 KB Output is correct
26 Correct 13 ms 5228 KB Output is correct
27 Correct 8 ms 4696 KB Output is correct
28 Correct 20 ms 7880 KB Output is correct
29 Correct 35 ms 7232 KB Output is correct
30 Correct 21 ms 7876 KB Output is correct
31 Correct 18 ms 7772 KB Output is correct
32 Correct 1 ms 1624 KB Output is correct
33 Correct 2 ms 3164 KB Output is correct
34 Correct 1 ms 344 KB Output is correct
35 Correct 1 ms 348 KB Output is correct
36 Correct 0 ms 348 KB Output is correct
37 Correct 0 ms 348 KB Output is correct
38 Correct 0 ms 348 KB Output is correct
39 Correct 1 ms 1372 KB Output is correct
40 Correct 465 ms 416756 KB Output is correct
41 Execution timed out 1109 ms 1722636 KB Time limit exceeded
42 Halted 0 ms 0 KB -