Submission #1082416

# Submission time Handle Problem Language Result Execution time Memory
1082416 2024-08-31T10:02:43 Z binminh01 Food Court (JOI21_foodcourt) C++17
14 / 100
1000 ms 63912 KB
#include<bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,fma,bmi,bmi2,popcnt,lzcnt")
 
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define int128 __int128_t
#define double long double
#define gcd __gcd
#define lcm(a, b) ((a)/gcd(a, b)*(b))
#define sqrt sqrtl
#define log2 log2l
#define log10 log10l
#define floor floorl
#define to_string str
#define yes cout << "YES"
#define no cout << "NO"
#define trav(i, a) for (auto &i: (a))
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define sz(a) (int)a.size()
#define Max(a) *max_element(all(a))
#define Min(a) *min_element(all(a))
#define Find(a, n) (find(all(a), n) - a.begin())
#define Count(a, n) count(all(a), n)
#define Upper(a, n) (upper_bound(all(a), n) - a.begin())
#define Lower(a, n) (lower_bound(all(a), n) - a.begin())
#define next_perm(a) next_permutation(all(a))
#define prev_perm(a) prev_permutation(all(a))
#define sorted(a) is_sorted(all(a))
#define sum(a) accumulate(all(a), 0)
#define sumll(a) accumulate(all(a), 0ll)
#define Sort(a) sort(all(a))
#define Reverse(a) reverse(all(a))
#define Unique(a) Sort(a), (a).resize(unique(all(a)) - a.begin())
#define pb push_back
#define eb emplace_back
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll
#define clz __builtin_clz
#define clzll __buitlin_clzll
#define ctz __builtin_ctz
#define ctzll __builtin_ctzll
#define open(s) freopen(s, "r", stdin)
#define write(s) freopen(s, "w", stdout)
#define fileopen(s) open((string(s) + ".inp").c_str()), write((string(s) + ".out").c_str());
#define For(i, a, b) for (auto i = (a); i < (b); i++)
#define Fore(i, a, b) for (auto i = (a); i >= (b); i--)
#define FOR(i, a, b) for (auto i = (a); i <= (b); i++)
#define ret(s) return void(cout << s);
 
const int mod = 1e9 + 7, mod2 = 998244353;
const double PI = acos(-1), eps = 1e-9;
const ull npos = string::npos;
const int dx[] = {0, 0, -1, 1}, dy[] = {-1, 1, 0, 0};
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using cd = complex<double>;
mt19937 mt(chrono::system_clock::now().time_since_epoch().count());
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<double> vdo;
typedef vector<vdo> vvdo;
typedef vector<string> vs;
typedef vector<pii> vpair;
typedef vector<vpair> vvpair;
typedef vector<bool> vb;
typedef vector<vb> vvb;
typedef vector<char> vc;
typedef vector<vc> vvc;
typedef vector<cd> vcd;
typedef priority_queue<int> pq;
typedef priority_queue<int, vi, greater<int>> pqg;
typedef priority_queue<ll> pqll;
typedef priority_queue<ll, vll, greater<ll>> pqgll;
 
ll add(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a+=b;return a >= m ? a - m: a;}
ll sub(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;a-=b;return a < 0 ? a + m: a;}
ll mul(ll a, ll b, int m) {if (a >= m) a%=m;if (b >= m) b%=m;return a*b % m;}
ll bin_mul(ll a, ll b, ll m) {if (a >= m) a%=m;if (b >= m) b%=m;ll x = 0;while (b) {if (b & 1) x = (x + a) % m;a = (a + a) % m;b>>=1;}return x;}
ll bin_pow(ll a, ll b, ll m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = bin_mul(x, a, m);a = bin_mul(a, a, m);b>>=1;}return x;}
ll power(ll a, ll b, int m) {ll x = 1;if (a >= m) a%=m; while (b) {if (b & 1) x = x*a % m;a = a*a % m;b>>=1;}return x;}
ll power(ll a, ll b) {ll x = 1;while (b) {if (b & 1) x = x*a;a = a*a;b>>=1;}return x;}
ll ceil(ll a, ll b) {return (a + b - 1)/b;}
ll to_int(const string &s) {ll x = 0; for (int i = (s[0] == '-'); i < sz(s); i++) x = x*10 + s[i] - '0';return x*(s[0] == '-' ? -1: 1);}
bool is_prime(ll n) {if (n < 2) return 0;if (n < 4) return 1;if (n % 2 == 0 || n % 3 == 0) return 0;for (ll i = 5; i*i <= n; i+=6) {if(n % i == 0 || n % (i + 2) == 0) return 0;}return 1;}
bool is_square(ll n) {ll k = sqrt(n); return k*k == n;}
ll factorial(int n) {ll x = 1;for (int i = 2; i <= n; i++) x*=i;return x;}
ll factorial(int n, int m) {ll x = 1;for (ll i = 2; i <= n; i++) x = x*i % m;return x;}
bool is_power(ll n, ll k) {while (n % k == 0) n/=k;return n == 1ll;}
string str(ll n) {if (n == 0) return "0"; string s = ""; bool c = 0; if (n < 0) c = 1, n = -n; while (n) {s+=n % 10 + '0'; n/=10;} if (c) s+='-'; Reverse(s); return s;}
string repeat(const string &s, int n) {if (n < 0) return ""; string x = ""; while (n--) x+=s; return x;}
string bin(ll n) {string s = ""; while (n) {s+=(n & 1) + '0'; n>>=1;} Reverse(s); return s;}
void sieve(vector<bool> &a) {int n = a.size(); a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(bool a[], int n) {a[0] = a[1] = 0; for (int i = 4; i < n; i+=2) a[i] = 0; for (int i = 3; i*i < n; i+=2) {if (a[i]) {for (int j = i*i; j < n; j+=(i << 1)) a[j] = 0;}}}
void sieve(vector<int> &a) {int n = a.size(); for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
void sieve(int a[], int n) {for (int i = 2; i < n; i+=2) a[i] = 2; for (int i = 3; i*i < n; i+=2) {if (!a[i]) {for (int j = i; j < n; j+=(i << 1)) a[j] = i;}} for (int i = 3; i < n; i+=2) {if (!a[i]) a[i] = i;}}
vector<pii> factorize(int n) {vector<pii> a; for (int i = 2; i*i <= n; i++) {if (n % i == 0) {int k = 0; while (n % i == 0) k++, n/=i; a.emplace_back(i, k);}} if (n > 1) a.emplace_back(n, 1); return a;}
int rand(int l, int r) {return uniform_int_distribution<int>(l, r)(mt);}
int Log2(int n) {return 31 - __builtin_clz(n);}
template<class T> void compress(vector<T> &a) {vector<T> b; for (T &i: a) b.push_back(i); sort(all(b)); b.resize(unique(all(b)) - b.begin()); for (T &i: a) i = lower_bound(all(b), i) - b.begin() + 1;}
 
template<class A, class B> istream& operator>>(istream& in, pair<A, B> &p) {in >> p.first >> p.second; return in;}
template<class A, class B> ostream& operator<<(ostream& out, const pair<A, B> &p) {out << p.first << ' ' << p.second; return out;}
template<class T> istream& operator>>(istream& in, vector<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<T> &a) {for (auto &i: a) out << i << ' '; return out;}
template<class T> istream& operator>>(istream& in, vector<vector<T>> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const vector<vector<T>> &a) {for (auto &i: a) out << i << '\n'; return out;}
template<class T> istream& operator>>(istream& in, deque<T> &a) {for (auto &i: a) in >> i; return in;}
template<class T> ostream& operator<<(ostream& out, const deque<T> &a) {for (auto &i: a) out << i << ' '; return out;}
// istream& operator>>(istream& in, __int128_t &a) {string s; in >> s; a = 0; for (auto &i: s) a = a*10 + (i - '0'); return in;}
// ostream& operator<<(ostream& out, __int128_t a) {string s = ""; while (a > 0) {s+=(int)(a % 10) + '0'; a/=10;} Reverse(s); out << s; return out;}
 
const int N = 250001;
using ii = pair<ll, int>;
struct segtree_lazy_min {
    int n, h;
    ii t[2*N];
    ll d[N];
    segtree_lazy_min(int n): n(n) {
        h = 32 - __builtin_clz(n);
        For(i,0,2*n) t[i] = {0, 0};
        memset(d, 0, sizeof(d));
    }
    void apply(int i, ll v) {
        t[i].first+=v;
        if (i < n) d[i]+=v;
    }
    void rebuild(int i) {
        while (i > 1) i>>=1, t[i] = min(t[i << 1], t[i << 1|1]), t[i].first+=d[i];
    }
    void push(int i) {
        for (int j = h; j > 0; j--) {
            int k = i >> j;
            if (d[k] != 0) {
                apply(k << 1, d[k]); apply(k << 1|1, d[k]);
                d[k] = 0;
            }
        }
    }
    void set(int l, int r, ll v) {
        r++;
        l+=n; r+=n;
        int L = l, R = r;
        for (; l < r; l>>=1, r>>=1) {
            if (l & 1) apply(l++, v);
            if (r & 1) apply(--r, v);
        }
        rebuild(L); rebuild(R - 1);
    }
    void build(const vector<ll> &a) {
        for (int i = 0; i < n; i++) set(i, i, a[i]);
    }
    ii get(int l, int r) {
        r++;
        l+=n; r+=n;
        push(l); push(r - 1);
        ii x = {1e18, 0};
        for (; l < r; l>>=1, r>>=1) {
            if (l & 1) x = min(x, t[l++]);
            if (r & 1) x = min(x, t[--r]);
        }
        return x;
    }
};
struct segtree_lazy_sum_recursive {
    int n;
    ll t[4*N], z[4*N];
    ll merge(ll a, ll b) {return a + b;}
    segtree_lazy_sum_recursive(int n): n(n) {
        memset(t, 0, sizeof(t)); memset(z, 0, sizeof(z));
    }
    void build(const vector<ll> &a, int x, int lx, int rx) {
        if (lx == rx) {
            t[x] = a[lx];
            return;
        }
        int m = (lx + rx) >> 1;
        build(a, x << 1, lx, m);
        build(a, x << 1|1, m + 1, rx);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    void down(int i, int l, int r) {
        ll k = z[i];
        int m = (l + r) >> 1;
        if (k != 0) {
            t[i << 1]+=k*(m - l + 1);
            t[i << 1|1]+=k*(r - m);
            z[i << 1]+=k; z[i << 1|1]+=k;
            z[i] = 0;
        }
    }
    void set(int l, int r, int x, int lx, int rx, ll d) {
        if (lx > r || rx < l) return;
        if (lx >= l && rx <= r) {t[x]+=d*(rx - lx + 1); z[x]+=d; return;}
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        set(l, r, x << 1, lx, m, d);
        set(l, r, x << 1|1, m + 1, rx, d);
        t[x] = merge(t[x << 1], t[x << 1|1]);
    }
    ll get(int l, int r, int x, int lx, int rx) {
        if (lx > r || rx < l) return 0;
        if (lx >= l && rx <= r) return t[x];
        down(x, lx, rx);
        int m = (lx + rx) >> 1;
        return merge(get(l, r, x << 1, lx, m), get(l, r, x << 1|1, m + 1, rx));
    }
    ll get(int i, int x, int l, int r) {
        if (l == r) return t[x];
        down(x, l, r);
        int m = (l + r) >> 1;
        return i <= m ? get(i, x << 1, l, m): get(i, x << 1|1, m + 1, r);
    }
    int walk(int i, int x, int l, int r, ll d) {
        if (r < i || t[x] < d) return -1;
        if (l == r) return l;
        down(x, l, r);
        int m = (l + r) >> 1;
        int w = walk(i, x << 1, l, m, d);
        if (w == -1) w = walk(i, x << 1|1, m + 1, r, d);
        return w;
    }
    void build(const vector<ll> &a) {build(a, 1, 0, n);}
    void set(int l, int r, ll d) {set(l, r, 1, 0, n, d);}
    ll get(int l, int r) {return get(l, r, 1, 0, n);}
    ll get(int i) {return get(i, 1, 0, n);}
    int walk(int i, ll d) {return walk(i, 1, 0, n, d);}
};
struct que {
    int o, i, k;
    que(int o = 0, int i = 0, int k = 0): o(o), i(i), k(k) {}
};
int g[N], f[N];
vector<que> w[N];
vector<ii> a[N];
bool p[N];
int main() {
    ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL);
    cout << fixed << setprecision(10);
    int n, m, q; cin >> n >> m >> q;
    segtree_lazy_min t(q + 1);
    segtree_lazy_sum_recursive t1(q), t2(q);
    FOR(i,1,q){
        int o; cin >> o;
        if (o == 1) {
            int l, r, c, k; cin >> l >> r >> c >> k;
            g[i] = c;
            w[l].eb(o, i, k); w[r + 1].eb(o, i, -k);
        } else if (o == 2) {
            int l, r, k; cin >> l >> r >> k;
            w[l].eb(o, i, -k); w[r + 1].eb(o, i, k);
        } else {
            int j; ll v; cin >> j >> v;
            p[i] = 1;
            a[j].eb(v, i);
        }
    }
    FOR(i,1,n){
        for (auto [o, j, k]: w[i]) {
            t.set(j, q, k);
            if (o == 1) t1.set(j, q, k);
            else t2.set(j, q, -k);
        }
        for (auto [v, j]: a[i]) {
            auto [u, l] = t.get(0, j);
            if (t.get(j, j).first < u + v) continue;
            v+=t2.get(j) + u;
            f[j] = g[t1.walk(l + 1, v)];
        }
    }
    FOR(i,1,q){
        if (p[i]) cout << f[i] << '\n';
    }
    cerr << "\nProcess returned 0 (0x0)   execution time :  " << 0.001*clock() << " s";
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 29 ms 53848 KB Output is correct
2 Correct 28 ms 53840 KB Output is correct
3 Correct 28 ms 53820 KB Output is correct
4 Correct 25 ms 53852 KB Output is correct
5 Correct 33 ms 53828 KB Output is correct
6 Correct 28 ms 53840 KB Output is correct
7 Correct 29 ms 53852 KB Output is correct
8 Correct 29 ms 53848 KB Output is correct
9 Correct 29 ms 53852 KB Output is correct
10 Correct 27 ms 53852 KB Output is correct
11 Correct 29 ms 53832 KB Output is correct
12 Correct 29 ms 53844 KB Output is correct
13 Correct 29 ms 53752 KB Output is correct
14 Correct 29 ms 53844 KB Output is correct
15 Correct 28 ms 53852 KB Output is correct
16 Correct 28 ms 53856 KB Output is correct
17 Correct 29 ms 53916 KB Output is correct
18 Correct 29 ms 53880 KB Output is correct
19 Correct 29 ms 53848 KB Output is correct
20 Correct 30 ms 53852 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 29 ms 53848 KB Output is correct
2 Correct 28 ms 53840 KB Output is correct
3 Correct 28 ms 53820 KB Output is correct
4 Correct 25 ms 53852 KB Output is correct
5 Correct 33 ms 53828 KB Output is correct
6 Correct 28 ms 53840 KB Output is correct
7 Correct 29 ms 53852 KB Output is correct
8 Correct 29 ms 53848 KB Output is correct
9 Correct 29 ms 53852 KB Output is correct
10 Correct 27 ms 53852 KB Output is correct
11 Correct 29 ms 53832 KB Output is correct
12 Correct 29 ms 53844 KB Output is correct
13 Correct 29 ms 53752 KB Output is correct
14 Correct 29 ms 53844 KB Output is correct
15 Correct 28 ms 53852 KB Output is correct
16 Correct 28 ms 53856 KB Output is correct
17 Correct 29 ms 53916 KB Output is correct
18 Correct 29 ms 53880 KB Output is correct
19 Correct 29 ms 53848 KB Output is correct
20 Correct 30 ms 53852 KB Output is correct
21 Correct 40 ms 53848 KB Output is correct
22 Correct 30 ms 53704 KB Output is correct
23 Correct 31 ms 53840 KB Output is correct
24 Correct 30 ms 53848 KB Output is correct
25 Correct 26 ms 53852 KB Output is correct
26 Correct 30 ms 53728 KB Output is correct
27 Correct 29 ms 53852 KB Output is correct
28 Correct 32 ms 53844 KB Output is correct
29 Correct 32 ms 53852 KB Output is correct
30 Correct 29 ms 53848 KB Output is correct
31 Correct 29 ms 53960 KB Output is correct
32 Correct 30 ms 53940 KB Output is correct
33 Correct 28 ms 53848 KB Output is correct
34 Correct 29 ms 53884 KB Output is correct
35 Correct 28 ms 53852 KB Output is correct
36 Correct 30 ms 53852 KB Output is correct
37 Correct 28 ms 53708 KB Output is correct
38 Correct 31 ms 53844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 90 ms 56656 KB Output is correct
2 Correct 102 ms 56480 KB Output is correct
3 Correct 92 ms 56660 KB Output is correct
4 Correct 99 ms 56656 KB Output is correct
5 Correct 93 ms 56660 KB Output is correct
6 Correct 91 ms 56676 KB Output is correct
7 Correct 327 ms 55656 KB Output is correct
8 Correct 381 ms 55760 KB Output is correct
9 Correct 112 ms 56584 KB Output is correct
10 Correct 98 ms 56692 KB Output is correct
11 Correct 124 ms 56660 KB Output is correct
12 Correct 90 ms 56656 KB Output is correct
13 Correct 274 ms 56144 KB Output is correct
14 Correct 309 ms 56656 KB Output is correct
15 Correct 114 ms 56564 KB Output is correct
16 Correct 139 ms 56664 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 1057 ms 63912 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 29 ms 53848 KB Output is correct
2 Correct 28 ms 53840 KB Output is correct
3 Correct 28 ms 53820 KB Output is correct
4 Correct 25 ms 53852 KB Output is correct
5 Correct 33 ms 53828 KB Output is correct
6 Correct 28 ms 53840 KB Output is correct
7 Correct 29 ms 53852 KB Output is correct
8 Correct 29 ms 53848 KB Output is correct
9 Correct 29 ms 53852 KB Output is correct
10 Correct 27 ms 53852 KB Output is correct
11 Correct 29 ms 53832 KB Output is correct
12 Correct 29 ms 53844 KB Output is correct
13 Correct 29 ms 53752 KB Output is correct
14 Correct 29 ms 53844 KB Output is correct
15 Correct 28 ms 53852 KB Output is correct
16 Correct 28 ms 53856 KB Output is correct
17 Correct 29 ms 53916 KB Output is correct
18 Correct 29 ms 53880 KB Output is correct
19 Correct 29 ms 53848 KB Output is correct
20 Correct 30 ms 53852 KB Output is correct
21 Correct 90 ms 56656 KB Output is correct
22 Correct 102 ms 56480 KB Output is correct
23 Correct 92 ms 56660 KB Output is correct
24 Correct 99 ms 56656 KB Output is correct
25 Correct 93 ms 56660 KB Output is correct
26 Correct 91 ms 56676 KB Output is correct
27 Correct 327 ms 55656 KB Output is correct
28 Correct 381 ms 55760 KB Output is correct
29 Correct 112 ms 56584 KB Output is correct
30 Correct 98 ms 56692 KB Output is correct
31 Correct 124 ms 56660 KB Output is correct
32 Correct 90 ms 56656 KB Output is correct
33 Correct 274 ms 56144 KB Output is correct
34 Correct 309 ms 56656 KB Output is correct
35 Correct 114 ms 56564 KB Output is correct
36 Correct 139 ms 56664 KB Output is correct
37 Execution timed out 1006 ms 56404 KB Time limit exceeded
38 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 971 ms 56480 KB Output is correct
2 Execution timed out 1042 ms 56408 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 29 ms 53848 KB Output is correct
2 Correct 28 ms 53840 KB Output is correct
3 Correct 28 ms 53820 KB Output is correct
4 Correct 25 ms 53852 KB Output is correct
5 Correct 33 ms 53828 KB Output is correct
6 Correct 28 ms 53840 KB Output is correct
7 Correct 29 ms 53852 KB Output is correct
8 Correct 29 ms 53848 KB Output is correct
9 Correct 29 ms 53852 KB Output is correct
10 Correct 27 ms 53852 KB Output is correct
11 Correct 29 ms 53832 KB Output is correct
12 Correct 29 ms 53844 KB Output is correct
13 Correct 29 ms 53752 KB Output is correct
14 Correct 29 ms 53844 KB Output is correct
15 Correct 28 ms 53852 KB Output is correct
16 Correct 28 ms 53856 KB Output is correct
17 Correct 29 ms 53916 KB Output is correct
18 Correct 29 ms 53880 KB Output is correct
19 Correct 29 ms 53848 KB Output is correct
20 Correct 30 ms 53852 KB Output is correct
21 Correct 40 ms 53848 KB Output is correct
22 Correct 30 ms 53704 KB Output is correct
23 Correct 31 ms 53840 KB Output is correct
24 Correct 30 ms 53848 KB Output is correct
25 Correct 26 ms 53852 KB Output is correct
26 Correct 30 ms 53728 KB Output is correct
27 Correct 29 ms 53852 KB Output is correct
28 Correct 32 ms 53844 KB Output is correct
29 Correct 32 ms 53852 KB Output is correct
30 Correct 29 ms 53848 KB Output is correct
31 Correct 29 ms 53960 KB Output is correct
32 Correct 30 ms 53940 KB Output is correct
33 Correct 28 ms 53848 KB Output is correct
34 Correct 29 ms 53884 KB Output is correct
35 Correct 28 ms 53852 KB Output is correct
36 Correct 30 ms 53852 KB Output is correct
37 Correct 28 ms 53708 KB Output is correct
38 Correct 31 ms 53844 KB Output is correct
39 Correct 90 ms 56656 KB Output is correct
40 Correct 102 ms 56480 KB Output is correct
41 Correct 92 ms 56660 KB Output is correct
42 Correct 99 ms 56656 KB Output is correct
43 Correct 93 ms 56660 KB Output is correct
44 Correct 91 ms 56676 KB Output is correct
45 Correct 327 ms 55656 KB Output is correct
46 Correct 381 ms 55760 KB Output is correct
47 Correct 112 ms 56584 KB Output is correct
48 Correct 98 ms 56692 KB Output is correct
49 Correct 124 ms 56660 KB Output is correct
50 Correct 90 ms 56656 KB Output is correct
51 Correct 274 ms 56144 KB Output is correct
52 Correct 309 ms 56656 KB Output is correct
53 Correct 114 ms 56564 KB Output is correct
54 Correct 139 ms 56664 KB Output is correct
55 Execution timed out 1006 ms 56404 KB Time limit exceeded
56 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 29 ms 53848 KB Output is correct
2 Correct 28 ms 53840 KB Output is correct
3 Correct 28 ms 53820 KB Output is correct
4 Correct 25 ms 53852 KB Output is correct
5 Correct 33 ms 53828 KB Output is correct
6 Correct 28 ms 53840 KB Output is correct
7 Correct 29 ms 53852 KB Output is correct
8 Correct 29 ms 53848 KB Output is correct
9 Correct 29 ms 53852 KB Output is correct
10 Correct 27 ms 53852 KB Output is correct
11 Correct 29 ms 53832 KB Output is correct
12 Correct 29 ms 53844 KB Output is correct
13 Correct 29 ms 53752 KB Output is correct
14 Correct 29 ms 53844 KB Output is correct
15 Correct 28 ms 53852 KB Output is correct
16 Correct 28 ms 53856 KB Output is correct
17 Correct 29 ms 53916 KB Output is correct
18 Correct 29 ms 53880 KB Output is correct
19 Correct 29 ms 53848 KB Output is correct
20 Correct 30 ms 53852 KB Output is correct
21 Correct 40 ms 53848 KB Output is correct
22 Correct 30 ms 53704 KB Output is correct
23 Correct 31 ms 53840 KB Output is correct
24 Correct 30 ms 53848 KB Output is correct
25 Correct 26 ms 53852 KB Output is correct
26 Correct 30 ms 53728 KB Output is correct
27 Correct 29 ms 53852 KB Output is correct
28 Correct 32 ms 53844 KB Output is correct
29 Correct 32 ms 53852 KB Output is correct
30 Correct 29 ms 53848 KB Output is correct
31 Correct 29 ms 53960 KB Output is correct
32 Correct 30 ms 53940 KB Output is correct
33 Correct 28 ms 53848 KB Output is correct
34 Correct 29 ms 53884 KB Output is correct
35 Correct 28 ms 53852 KB Output is correct
36 Correct 30 ms 53852 KB Output is correct
37 Correct 28 ms 53708 KB Output is correct
38 Correct 31 ms 53844 KB Output is correct
39 Correct 90 ms 56656 KB Output is correct
40 Correct 102 ms 56480 KB Output is correct
41 Correct 92 ms 56660 KB Output is correct
42 Correct 99 ms 56656 KB Output is correct
43 Correct 93 ms 56660 KB Output is correct
44 Correct 91 ms 56676 KB Output is correct
45 Correct 327 ms 55656 KB Output is correct
46 Correct 381 ms 55760 KB Output is correct
47 Correct 112 ms 56584 KB Output is correct
48 Correct 98 ms 56692 KB Output is correct
49 Correct 124 ms 56660 KB Output is correct
50 Correct 90 ms 56656 KB Output is correct
51 Correct 274 ms 56144 KB Output is correct
52 Correct 309 ms 56656 KB Output is correct
53 Correct 114 ms 56564 KB Output is correct
54 Correct 139 ms 56664 KB Output is correct
55 Execution timed out 1057 ms 63912 KB Time limit exceeded
56 Halted 0 ms 0 KB -