#include "simurgh.h"
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll linf = ll(1e18);
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int, int> p2;
#define rep(i, high) for (int i = 0; i < high; i++)
#define repp(i, low, high) for (int i = low; i < high; i++)
#define repe(i, container) for (auto& i : container)
#define sz(container) ((int)container.size())
#define all(x) begin(x),end(x)
#if _LOCAL
#define assert(x) if (!(x)) __debugbreak()
#endif
struct UF
{
vi par;
UF(int n) : par(n)
{
rep(i, n)par[i] = i;
}
int find(int x) { return x == par[x] ? x : par[x] = find(par[x]); }
void merge(int a, int b)
{
a = find(a); b = find(b);
if (a == b) return;
par[b] = a;
}
};
vi spanning;
const int maxn = 500;
const int maxm = maxn * maxn;
int is_golden[maxm], vis[maxn], parnode[maxn], paredge[maxn];
int depth[maxn], visedge[maxm], maxup[maxn], known[maxm];
vector<p2> up_edges[maxn];
void dfs(int u, vector<vector<p2>>& edges)
{
repe(e, edges[u])
{
if (vis[e.first]) // back edge
{
if (visedge[e.second]) continue;
visedge[e.second] = 1;
up_edges[u].push_back(e);
maxup[u] = min(maxup[u], depth[e.first]);
}
else
{
depth[e.first] = depth[u] + 1;
visedge[e.second] = 1;
spanning.push_back(e.second);
vis[e.first] = 1;
parnode[e.first] = u;
paredge[e.first] = e.second;
dfs(e.first, edges);
if (maxup[e.first]>=depth[e.first]) // bridge
{
is_golden[e.second] = 1;
known[e.second] = 1;
}
maxup[u] = min(maxup[u], maxup[e.first]);
}
}
}
vi a, b;
int n;
int forest_query(vi edges)
{
vi q;
UF uf(n);
repe(u, edges)
{
q.emplace_back(u);
if (uf.find(a[u]) == uf.find(b[u])) assert(0);
uf.merge(a[u], b[u]);
}
int num_good = 0;
repe(s, spanning)
{
if (uf.find(a[s]) == uf.find(b[s])) continue;
uf.merge(a[s], b[s]);
num_good += is_golden[s];
q.push_back(s);
}
assert(sz(q) < n);
return count_common_roads(q) - num_good;
}
std::vector<int> find_roads(int N, std::vector<int> A, std::vector<int> B) {
a = A;
b = B;
n = N;
rep(i, maxn) maxup[i] = int(1e6);
memset(is_golden, 0, sizeof(is_golden));
memset(parnode, -1, sizeof(parnode));
if (n==2)
{
return { 0 };
}
int m = sz(a);
vector<vector<p2>> dedges(n);
rep(i, m)
{
dedges[a[i]].emplace_back(b[i], i);
dedges[b[i]].emplace_back(a[i], i);
}
vis[0] = 1;
parnode[0] = 0;
depth[0] = 0;
dfs(0, dedges);
parnode[0] = -1;
repp(u, 1, n)
{
repe(e, up_edges[u])
{
vi cycle = { e.second };
int num_unknown = 0;
int v = u;
while (v != 0 && v != e.first)
{
if (!known[paredge[v]]) num_unknown++;
cycle.push_back(paredge[v]);
v = parnode[v];
}
if (num_unknown == 0) continue;
bool seen_known = 0;
int mx = 0;
vector<p2> res;
rep(i, sz(cycle))
{
UF uf(n);
vi q;
rep(j, sz(cycle))
{
if (i == j) continue;
q.push_back(cycle[j]);
uf.merge(a[cycle[j]], b[cycle[j]]);
}
repe(u, spanning)
{
if (uf.find(a[u]) == uf.find(b[u])) continue;
uf.merge(a[u], b[u]);
q.push_back(u);
}
if (known[cycle[i]])
{
if (!seen_known)
{
seen_known = 1;
int k = count_common_roads(q);
if (!is_golden[cycle[i]])
{
mx = k;
}
else mx = k + 1;
}
}
else
{
res.emplace_back(cycle[i], count_common_roads(q));
}
mx = max(mx, res.back().second);
}
repe(v, res)
{
if (v.second < mx)
{
is_golden[v.first] = 1;
}
known[v.first] = 1;
}
}
}
assert(sz(spanning) == n - 1);
vector<set<int>> edges(n);
rep(i, m)
{
edges[a[i]].insert(i);
edges[b[i]].insert(i);
}
queue<int> leaf;
vi deg(n);
rep(i, n)
{
deg[i] = forest_query(vi(all(edges[i])));
if (deg[i] == 1) leaf.push(i);
}
vi par(n, -1);
while (sz(leaf))
{
int u = leaf.front();
leaf.pop();
if (deg[u] == 0) break;
assert(deg[u] == 1);
int lo = -1;
int hi = sz(edges[u]);
while (lo+1<hi)
{
int mid = (lo + hi) / 2;
vi q;
auto start = edges[u].begin();
rep(i, mid + 1)
{
q.push_back(*start);
start++;
}
if (forest_query(q))
{
hi = mid;
}
else lo = mid;
}
auto start = edges[u].begin();
rep(i, hi) start = next(start);
int e = *start;
int v = a[e] == u ? b[e] : a[e];
edges[v].erase(e);
deg[v]--;
if (deg[v]==1)
{
leaf.push(v);
}
par[u] = e;
}
vi r;
rep(i, n) if (par[i] != -1)r.push_back(par[i]);
int common = count_common_roads(r);
assert(common == n - 1);
return r;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
3164 KB |
correct |
2 |
Correct |
1 ms |
3164 KB |
correct |
3 |
Correct |
1 ms |
3164 KB |
correct |
4 |
Correct |
1 ms |
3164 KB |
correct |
5 |
Correct |
1 ms |
3160 KB |
correct |
6 |
Correct |
1 ms |
3164 KB |
correct |
7 |
Correct |
1 ms |
3164 KB |
correct |
8 |
Correct |
1 ms |
3164 KB |
correct |
9 |
Correct |
1 ms |
3164 KB |
correct |
10 |
Correct |
1 ms |
3164 KB |
correct |
11 |
Correct |
1 ms |
3164 KB |
correct |
12 |
Correct |
1 ms |
3164 KB |
correct |
13 |
Correct |
1 ms |
3164 KB |
correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
3164 KB |
correct |
2 |
Correct |
1 ms |
3164 KB |
correct |
3 |
Correct |
1 ms |
3164 KB |
correct |
4 |
Correct |
1 ms |
3164 KB |
correct |
5 |
Correct |
1 ms |
3160 KB |
correct |
6 |
Correct |
1 ms |
3164 KB |
correct |
7 |
Correct |
1 ms |
3164 KB |
correct |
8 |
Correct |
1 ms |
3164 KB |
correct |
9 |
Correct |
1 ms |
3164 KB |
correct |
10 |
Correct |
1 ms |
3164 KB |
correct |
11 |
Correct |
1 ms |
3164 KB |
correct |
12 |
Correct |
1 ms |
3164 KB |
correct |
13 |
Correct |
1 ms |
3164 KB |
correct |
14 |
Correct |
2 ms |
3420 KB |
correct |
15 |
Correct |
2 ms |
3420 KB |
correct |
16 |
Correct |
2 ms |
3440 KB |
correct |
17 |
Correct |
2 ms |
3420 KB |
correct |
18 |
Correct |
1 ms |
3164 KB |
correct |
19 |
Correct |
2 ms |
3420 KB |
correct |
20 |
Correct |
2 ms |
3164 KB |
correct |
21 |
Correct |
3 ms |
3404 KB |
correct |
22 |
Correct |
2 ms |
3164 KB |
correct |
23 |
Correct |
2 ms |
3164 KB |
correct |
24 |
Correct |
1 ms |
3164 KB |
correct |
25 |
Correct |
1 ms |
3164 KB |
correct |
26 |
Correct |
2 ms |
3344 KB |
correct |
27 |
Correct |
2 ms |
3164 KB |
correct |
28 |
Correct |
1 ms |
3164 KB |
correct |
29 |
Correct |
1 ms |
3164 KB |
correct |
30 |
Correct |
2 ms |
3164 KB |
correct |
31 |
Correct |
2 ms |
3164 KB |
correct |
32 |
Correct |
2 ms |
3164 KB |
correct |
33 |
Correct |
2 ms |
3164 KB |
correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
3164 KB |
correct |
2 |
Correct |
1 ms |
3164 KB |
correct |
3 |
Correct |
1 ms |
3164 KB |
correct |
4 |
Correct |
1 ms |
3164 KB |
correct |
5 |
Correct |
1 ms |
3160 KB |
correct |
6 |
Correct |
1 ms |
3164 KB |
correct |
7 |
Correct |
1 ms |
3164 KB |
correct |
8 |
Correct |
1 ms |
3164 KB |
correct |
9 |
Correct |
1 ms |
3164 KB |
correct |
10 |
Correct |
1 ms |
3164 KB |
correct |
11 |
Correct |
1 ms |
3164 KB |
correct |
12 |
Correct |
1 ms |
3164 KB |
correct |
13 |
Correct |
1 ms |
3164 KB |
correct |
14 |
Correct |
2 ms |
3420 KB |
correct |
15 |
Correct |
2 ms |
3420 KB |
correct |
16 |
Correct |
2 ms |
3440 KB |
correct |
17 |
Correct |
2 ms |
3420 KB |
correct |
18 |
Correct |
1 ms |
3164 KB |
correct |
19 |
Correct |
2 ms |
3420 KB |
correct |
20 |
Correct |
2 ms |
3164 KB |
correct |
21 |
Correct |
3 ms |
3404 KB |
correct |
22 |
Correct |
2 ms |
3164 KB |
correct |
23 |
Correct |
2 ms |
3164 KB |
correct |
24 |
Correct |
1 ms |
3164 KB |
correct |
25 |
Correct |
1 ms |
3164 KB |
correct |
26 |
Correct |
2 ms |
3344 KB |
correct |
27 |
Correct |
2 ms |
3164 KB |
correct |
28 |
Correct |
1 ms |
3164 KB |
correct |
29 |
Correct |
1 ms |
3164 KB |
correct |
30 |
Correct |
2 ms |
3164 KB |
correct |
31 |
Correct |
2 ms |
3164 KB |
correct |
32 |
Correct |
2 ms |
3164 KB |
correct |
33 |
Correct |
2 ms |
3164 KB |
correct |
34 |
Correct |
58 ms |
7348 KB |
correct |
35 |
Correct |
49 ms |
7164 KB |
correct |
36 |
Correct |
46 ms |
6236 KB |
correct |
37 |
Correct |
19 ms |
3352 KB |
correct |
38 |
Correct |
49 ms |
7256 KB |
correct |
39 |
Correct |
53 ms |
6952 KB |
correct |
40 |
Correct |
41 ms |
6236 KB |
correct |
41 |
Correct |
53 ms |
7504 KB |
correct |
42 |
Correct |
51 ms |
7260 KB |
correct |
43 |
Correct |
27 ms |
5468 KB |
correct |
44 |
Correct |
26 ms |
4896 KB |
correct |
45 |
Correct |
25 ms |
5208 KB |
correct |
46 |
Correct |
23 ms |
4700 KB |
correct |
47 |
Correct |
15 ms |
3928 KB |
correct |
48 |
Correct |
6 ms |
3164 KB |
correct |
49 |
Correct |
10 ms |
3356 KB |
correct |
50 |
Correct |
15 ms |
3928 KB |
correct |
51 |
Correct |
33 ms |
5208 KB |
correct |
52 |
Correct |
28 ms |
4952 KB |
correct |
53 |
Correct |
22 ms |
4696 KB |
correct |
54 |
Correct |
33 ms |
5468 KB |
correct |
55 |
Correct |
34 ms |
5212 KB |
correct |
56 |
Correct |
31 ms |
5332 KB |
correct |
57 |
Correct |
28 ms |
5212 KB |
correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
3164 KB |
correct |
2 |
Correct |
1 ms |
3164 KB |
correct |
3 |
Correct |
172 ms |
15224 KB |
correct |
4 |
Correct |
329 ms |
21332 KB |
correct |
5 |
Correct |
310 ms |
21588 KB |
correct |
6 |
Correct |
310 ms |
21332 KB |
correct |
7 |
Correct |
300 ms |
21332 KB |
correct |
8 |
Correct |
323 ms |
21328 KB |
correct |
9 |
Correct |
333 ms |
21428 KB |
correct |
10 |
Correct |
334 ms |
21420 KB |
correct |
11 |
Correct |
294 ms |
21328 KB |
correct |
12 |
Correct |
320 ms |
21432 KB |
correct |
13 |
Correct |
1 ms |
3164 KB |
correct |
14 |
Correct |
307 ms |
21408 KB |
correct |
15 |
Correct |
332 ms |
21188 KB |
correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
3164 KB |
correct |
2 |
Correct |
1 ms |
3164 KB |
correct |
3 |
Correct |
1 ms |
3164 KB |
correct |
4 |
Correct |
1 ms |
3164 KB |
correct |
5 |
Correct |
1 ms |
3160 KB |
correct |
6 |
Correct |
1 ms |
3164 KB |
correct |
7 |
Correct |
1 ms |
3164 KB |
correct |
8 |
Correct |
1 ms |
3164 KB |
correct |
9 |
Correct |
1 ms |
3164 KB |
correct |
10 |
Correct |
1 ms |
3164 KB |
correct |
11 |
Correct |
1 ms |
3164 KB |
correct |
12 |
Correct |
1 ms |
3164 KB |
correct |
13 |
Correct |
1 ms |
3164 KB |
correct |
14 |
Correct |
2 ms |
3420 KB |
correct |
15 |
Correct |
2 ms |
3420 KB |
correct |
16 |
Correct |
2 ms |
3440 KB |
correct |
17 |
Correct |
2 ms |
3420 KB |
correct |
18 |
Correct |
1 ms |
3164 KB |
correct |
19 |
Correct |
2 ms |
3420 KB |
correct |
20 |
Correct |
2 ms |
3164 KB |
correct |
21 |
Correct |
3 ms |
3404 KB |
correct |
22 |
Correct |
2 ms |
3164 KB |
correct |
23 |
Correct |
2 ms |
3164 KB |
correct |
24 |
Correct |
1 ms |
3164 KB |
correct |
25 |
Correct |
1 ms |
3164 KB |
correct |
26 |
Correct |
2 ms |
3344 KB |
correct |
27 |
Correct |
2 ms |
3164 KB |
correct |
28 |
Correct |
1 ms |
3164 KB |
correct |
29 |
Correct |
1 ms |
3164 KB |
correct |
30 |
Correct |
2 ms |
3164 KB |
correct |
31 |
Correct |
2 ms |
3164 KB |
correct |
32 |
Correct |
2 ms |
3164 KB |
correct |
33 |
Correct |
2 ms |
3164 KB |
correct |
34 |
Correct |
58 ms |
7348 KB |
correct |
35 |
Correct |
49 ms |
7164 KB |
correct |
36 |
Correct |
46 ms |
6236 KB |
correct |
37 |
Correct |
19 ms |
3352 KB |
correct |
38 |
Correct |
49 ms |
7256 KB |
correct |
39 |
Correct |
53 ms |
6952 KB |
correct |
40 |
Correct |
41 ms |
6236 KB |
correct |
41 |
Correct |
53 ms |
7504 KB |
correct |
42 |
Correct |
51 ms |
7260 KB |
correct |
43 |
Correct |
27 ms |
5468 KB |
correct |
44 |
Correct |
26 ms |
4896 KB |
correct |
45 |
Correct |
25 ms |
5208 KB |
correct |
46 |
Correct |
23 ms |
4700 KB |
correct |
47 |
Correct |
15 ms |
3928 KB |
correct |
48 |
Correct |
6 ms |
3164 KB |
correct |
49 |
Correct |
10 ms |
3356 KB |
correct |
50 |
Correct |
15 ms |
3928 KB |
correct |
51 |
Correct |
33 ms |
5208 KB |
correct |
52 |
Correct |
28 ms |
4952 KB |
correct |
53 |
Correct |
22 ms |
4696 KB |
correct |
54 |
Correct |
33 ms |
5468 KB |
correct |
55 |
Correct |
34 ms |
5212 KB |
correct |
56 |
Correct |
31 ms |
5332 KB |
correct |
57 |
Correct |
28 ms |
5212 KB |
correct |
58 |
Correct |
1 ms |
3164 KB |
correct |
59 |
Correct |
1 ms |
3164 KB |
correct |
60 |
Correct |
172 ms |
15224 KB |
correct |
61 |
Correct |
329 ms |
21332 KB |
correct |
62 |
Correct |
310 ms |
21588 KB |
correct |
63 |
Correct |
310 ms |
21332 KB |
correct |
64 |
Correct |
300 ms |
21332 KB |
correct |
65 |
Correct |
323 ms |
21328 KB |
correct |
66 |
Correct |
333 ms |
21428 KB |
correct |
67 |
Correct |
334 ms |
21420 KB |
correct |
68 |
Correct |
294 ms |
21328 KB |
correct |
69 |
Correct |
320 ms |
21432 KB |
correct |
70 |
Correct |
1 ms |
3164 KB |
correct |
71 |
Correct |
307 ms |
21408 KB |
correct |
72 |
Correct |
332 ms |
21188 KB |
correct |
73 |
Correct |
1 ms |
3160 KB |
correct |
74 |
Correct |
299 ms |
21216 KB |
correct |
75 |
Correct |
318 ms |
20768 KB |
correct |
76 |
Correct |
111 ms |
10064 KB |
correct |
77 |
Correct |
304 ms |
22096 KB |
correct |
78 |
Correct |
364 ms |
22100 KB |
correct |
79 |
Correct |
320 ms |
22356 KB |
correct |
80 |
Correct |
302 ms |
21584 KB |
correct |
81 |
Correct |
283 ms |
19544 KB |
correct |
82 |
Correct |
282 ms |
21708 KB |
correct |
83 |
Correct |
178 ms |
12880 KB |
correct |
84 |
Correct |
158 ms |
14824 KB |
correct |
85 |
Correct |
149 ms |
13648 KB |
correct |
86 |
Correct |
102 ms |
10308 KB |
correct |
87 |
Correct |
90 ms |
8520 KB |
correct |
88 |
Correct |
78 ms |
7264 KB |
correct |
89 |
Correct |
70 ms |
6864 KB |
correct |
90 |
Correct |
68 ms |
6440 KB |
correct |
91 |
Correct |
35 ms |
3672 KB |
correct |
92 |
Correct |
24 ms |
3420 KB |
correct |
93 |
Correct |
146 ms |
13648 KB |
correct |
94 |
Correct |
108 ms |
10316 KB |
correct |
95 |
Correct |
114 ms |
10160 KB |
correct |
96 |
Correct |
71 ms |
6492 KB |
correct |
97 |
Correct |
75 ms |
7248 KB |
correct |
98 |
Correct |
93 ms |
8516 KB |
correct |
99 |
Correct |
77 ms |
7372 KB |
correct |
100 |
Correct |
45 ms |
4280 KB |
correct |
101 |
Correct |
27 ms |
3420 KB |
correct |
102 |
Correct |
177 ms |
12896 KB |
correct |
103 |
Correct |
149 ms |
12884 KB |
correct |
104 |
Correct |
161 ms |
12668 KB |
correct |
105 |
Correct |
160 ms |
12628 KB |
correct |