Submission #1079663

# Submission time Handle Problem Language Result Execution time Memory
1079663 2024-08-28T20:42:07 Z danikoynov Bulldozer (JOI17_bulldozer) C++14
80 / 100
1591 ms 65436 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

struct Point
{
    ll x, y;
    
    Point(ll _x = 0, ll _y = 0)
    {
        x = _x;
        y = _y;
    }
    
    void input()
    {
        cin >> x >> y;
    }
};
    
const int MAXN = 2010;
int n;
pair < Point, ll > spot[MAXN];
void input()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
    {
        spot[i].first.input();
        cin >> spot[i].second;
    }
}

struct Fraction
{
    ll num, dev;

    Fraction(ll _num = 0, ll _dev = 0)
    {
        num = _num;
        dev = _dev;
    }

    void rationalize()
    {
        ll nod = __gcd(num, dev);
        if (nod < 0)
            nod = - nod;
        num /= nod;
        dev /= nod;
    }

    bool operator < (const Fraction f) const
    {
        /// num / dev < f.num / f.dev
        return (num * f.dev) < (f.num * dev);
    }
};


bool cmp(pair < Point, ll > p1, pair < Point, ll > p2)
{
    if (p1.first.x != p2.first.x)
        return p1.first.x < p2.first.x;
    return p1.first.y > p2.first.y;
}


const ll INF = 1e18;

struct Node
{
    ll val[2], res;

    Node()
    {
        val[0] = INF;
        val[1] = -INF;
        res = 0;
    }
};

Node unite(Node lf, Node rf)
{
    Node mf;
    mf.val[0] = min(lf.val[0], rf.val[0]);
    mf.val[1] = max(lf.val[1], rf.val[1]);
    mf.res = max(lf.res, rf.res);
    mf.res = max(mf.res, rf.val[1] - lf.val[0]);
    return mf;
}

Node tree[4 * MAXN];
ll pref[MAXN];

void build(int root, int left, int right)
{
    if (left == right)
    {
        tree[root].val[0] = tree[root].val[1] = pref[left];
        return;
    }

    int mid = (left + right) / 2;
    build(root * 2, left, mid);
    build(root * 2 + 1, mid + 1, right);

    tree[root] = unite(tree[root * 2], tree[root * 2 + 1]);
}

void update(int root, int left, int right, int pivot)
{
    if (left == right)
    {
        tree[root].val[0] = tree[root].val[1] = pref[left];
        return;
    }

    int mid = (left + right) / 2;
    if (pivot <= mid)
        update(root * 2, left, mid, pivot);
    else
        update(root * 2 + 1, mid + 1, right, pivot);
    
    tree[root] = unite(tree[root * 2], tree[root * 2 + 1]);
}

Node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return Node();

    if (left >= qleft && right <= qright)
        return tree[root];
    
    int mid = (left + right) / 2;
    return unite(query(root * 2, left, mid, qleft, qright),
            query(root * 2 + 1, mid + 1, right, qleft, qright));
}


int position[MAXN], swapped[MAXN][MAXN];

Fraction get_slope(Point p1, Point p2)
{
    if (p1.x > p2.x)
        swap(p1, p2);
    Fraction slope(p2.y - p1.y, p2.x - p1.x);
    slope.rationalize();
    return slope;
}

void simulate()
{
    if (n == 1)
    {
        ll result = 0;
        result = max(result, spot[1].second);
        cout << result << endl;
        return;
    }

    sort(spot + 1, spot + n + 1, cmp);
    for (int i = 1; i <= n; i ++)
        position[i] = i;

    vector < pair < Fraction, pair < int, int > > > events;
    for (int i = 1; i <= n; i ++)
        for (int j = i + 1; j <= n; j ++)
        {
            Fraction slope(spot[j].first.y - spot[i].first.y, 
                    spot[j].first.x - spot[i].first.x);
            slope.rationalize();
            events.push_back({slope, {i, j}});
        }

    sort(events.begin(), events.end());

    ll sum = 0, result = 0;
    for (int i = 1; i <= n; i ++)
    {
        sum += spot[i].second;
        if (sum < 0)
            sum = 0;
        result = max(result, sum);
        pref[i] = pref[i - 1] + spot[i].second;
    }
    //cout << "begin " << tree[1].best_sum << " " << cur << endl;
    
    build(1, 0, n);

    set < pair < Fraction, int > > change;
    for (int i = 1; i < n; i ++)
    {
        Fraction slope(spot[i + 1].first.y - spot[i].first.y, 
                spot[i + 1].first.x - spot[i].first.x);
        slope.rationalize();
        change.insert({slope, i});
    }

    ///for (pair < Fraction, pair < ll, ll > > event : events)
    while(!change.empty())
    {
        Fraction cur = (*change.begin()).first;
        //cout << "----------------" << endl;
        while(!change.empty())
        {
            if (cur < (*change.begin()).first)
                break;
            int pivot = (*change.begin()).second;
            //cout << "points: " << endl;
            //for (int i = 1; i <= n; i ++)
            //{
            //    cout << spot[i].first.x << " : " << spot[i].first.y << endl;
            //}
            //cout << "pivot " << pivot << " " << (*change.begin()).first.num << " / " << (*change.begin()).first.dev << endl;
            //cout << "swap " << postion[pivot] << " : " << postion
            change.erase(change.begin());
            if (pivot > 1 && !swapped[position[pivot - 1]][position[pivot]])
                change.erase({get_slope(spot[pivot].first, spot[pivot - 1].first), pivot - 1});
            if (pivot + 2 <= n && !swapped[position[pivot + 1]][position[pivot + 2]])
                change.erase({get_slope(spot[pivot + 2].first, spot[pivot + 1].first), pivot + 1});
            
            pref[pivot] -= spot[pivot].second;
            pref[pivot] += spot[pivot + 1].second;

            update(1, 0, n, pivot);

            /**Node lf = query(1, 0, n, 0, pivot), rf = query(1, 0, n, pivot, n);
            result = max(result, pref[pivot] - lf.val[0]);
            result = max(result, rf.val[1] - pref[pivot]);*/
            
            swapped[position[pivot]][position[pivot + 1]] = 1;
            swapped[position[pivot + 1]][position[pivot]] = 1;
            swap(position[pivot], position[pivot + 1]);
            swap(spot[pivot], spot[pivot + 1]);

            if (pivot > 1 && !swapped[position[pivot - 1]][position[pivot]])
                change.insert({get_slope(spot[pivot].first, spot[pivot - 1].first), pivot - 1});
            if (pivot + 2 <= n && !swapped[position[pivot + 1]][position[pivot + 2]])
                change.insert({get_slope(spot[pivot + 2].first, spot[pivot + 1].first), pivot + 1});

        }

        result = max(result, tree[1].res);
        /**sum = 0;
        for (int i = 1; i <= n; i ++)
        {
            sum += spot[i].second;
            if (sum < 0)
                sum = 0;
            result = max(result, sum);
        }*/
        //Fraction slope = event.first;
        /**pair < ll, ll > pivots = event.second;
        //cout << pivots.first << " : " << pivots.second << endl;
        assert(abs(position[pivots.first] - position[pivots.second]) == 1);
        int pivot = min(position[pivots.first], position[pivots.second]);
        pref[pivot] -= spot[pivot].second;
        pref[pivot] += spot[pivot + 1].second;
        swap(spot[position[pivots.first]], spot[position[pivots.second]]);
        swap(position[pivots.first], position[pivots.second]);
        update(1, 0, n, pivot);

        Node lf = query(1, 0, n, 0, pivot), rf = query(1, 0, n, pivot, n);
        result = max(result, pref[pivot] - lf.val[0]);
        result = max(result, rf.val[1] - pref[pivot]);*/
        /**
        sum = 0, cur = 0;;
        for (int i = 1; i <= n; i ++)
        {
            sum += spot[i].second;
            if (sum < 0)
                sum = 0;
            cur = max(cur, sum);
            //result = max(result, sum);
        }

        cout << "step " << tree[1].best_sum << " " << cur << endl;*/
    }

    cout << result << endl;
}

void solve()
{
    input();
    simulate();
}
int main()
{   
    solve();
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1304 KB Output is correct
2 Correct 1 ms 1308 KB Output is correct
3 Correct 1 ms 1308 KB Output is correct
4 Correct 1 ms 1304 KB Output is correct
5 Correct 1 ms 1308 KB Output is correct
6 Correct 1 ms 1308 KB Output is correct
7 Correct 1 ms 1308 KB Output is correct
8 Correct 1 ms 1308 KB Output is correct
9 Correct 2 ms 1304 KB Output is correct
10 Correct 1 ms 1308 KB Output is correct
11 Correct 0 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 1308 KB Output is correct
2 Correct 3 ms 1308 KB Output is correct
3 Correct 3 ms 1304 KB Output is correct
4 Correct 3 ms 1376 KB Output is correct
5 Correct 3 ms 1304 KB Output is correct
6 Correct 3 ms 1308 KB Output is correct
7 Correct 3 ms 1192 KB Output is correct
8 Correct 4 ms 1192 KB Output is correct
9 Correct 3 ms 1308 KB Output is correct
10 Correct 3 ms 1308 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 0 ms 644 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 3 ms 1376 KB Output is correct
22 Correct 3 ms 1308 KB Output is correct
23 Correct 3 ms 1308 KB Output is correct
24 Correct 3 ms 1308 KB Output is correct
25 Correct 3 ms 1308 KB Output is correct
26 Correct 3 ms 1308 KB Output is correct
27 Correct 3 ms 1308 KB Output is correct
28 Correct 3 ms 1308 KB Output is correct
29 Correct 3 ms 1308 KB Output is correct
30 Correct 3 ms 1308 KB Output is correct
31 Correct 4 ms 1308 KB Output is correct
32 Correct 3 ms 1380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 1308 KB Output is correct
2 Correct 3 ms 1308 KB Output is correct
3 Correct 3 ms 1304 KB Output is correct
4 Correct 3 ms 1376 KB Output is correct
5 Correct 3 ms 1304 KB Output is correct
6 Correct 3 ms 1308 KB Output is correct
7 Correct 3 ms 1192 KB Output is correct
8 Correct 4 ms 1192 KB Output is correct
9 Correct 3 ms 1308 KB Output is correct
10 Correct 3 ms 1308 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 0 ms 644 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 3 ms 1376 KB Output is correct
22 Correct 3 ms 1308 KB Output is correct
23 Correct 3 ms 1308 KB Output is correct
24 Correct 3 ms 1308 KB Output is correct
25 Correct 3 ms 1308 KB Output is correct
26 Correct 3 ms 1308 KB Output is correct
27 Correct 3 ms 1308 KB Output is correct
28 Correct 3 ms 1308 KB Output is correct
29 Correct 3 ms 1308 KB Output is correct
30 Correct 3 ms 1308 KB Output is correct
31 Correct 4 ms 1308 KB Output is correct
32 Correct 3 ms 1380 KB Output is correct
33 Correct 1455 ms 63436 KB Output is correct
34 Correct 1436 ms 63640 KB Output is correct
35 Correct 1443 ms 64156 KB Output is correct
36 Correct 1419 ms 64868 KB Output is correct
37 Correct 1440 ms 64068 KB Output is correct
38 Correct 1494 ms 64412 KB Output is correct
39 Correct 1489 ms 64048 KB Output is correct
40 Correct 1519 ms 64692 KB Output is correct
41 Correct 1455 ms 65156 KB Output is correct
42 Correct 1470 ms 64480 KB Output is correct
43 Correct 1372 ms 63920 KB Output is correct
44 Correct 1384 ms 63900 KB Output is correct
45 Correct 1425 ms 63860 KB Output is correct
46 Correct 1444 ms 63396 KB Output is correct
47 Correct 1441 ms 64128 KB Output is correct
48 Correct 1428 ms 63380 KB Output is correct
49 Correct 1388 ms 64292 KB Output is correct
50 Correct 1443 ms 63796 KB Output is correct
51 Correct 1377 ms 63904 KB Output is correct
52 Correct 1324 ms 64664 KB Output is correct
53 Correct 1328 ms 64648 KB Output is correct
54 Correct 1328 ms 63408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 1308 KB Output is correct
2 Correct 3 ms 1308 KB Output is correct
3 Correct 3 ms 1304 KB Output is correct
4 Correct 3 ms 1376 KB Output is correct
5 Correct 3 ms 1304 KB Output is correct
6 Correct 3 ms 1308 KB Output is correct
7 Correct 3 ms 1192 KB Output is correct
8 Correct 4 ms 1192 KB Output is correct
9 Correct 3 ms 1308 KB Output is correct
10 Correct 3 ms 1308 KB Output is correct
11 Correct 1 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 0 ms 604 KB Output is correct
18 Correct 0 ms 604 KB Output is correct
19 Correct 0 ms 644 KB Output is correct
20 Correct 0 ms 604 KB Output is correct
21 Correct 3 ms 1376 KB Output is correct
22 Correct 3 ms 1308 KB Output is correct
23 Correct 3 ms 1308 KB Output is correct
24 Correct 3 ms 1308 KB Output is correct
25 Correct 3 ms 1308 KB Output is correct
26 Correct 3 ms 1308 KB Output is correct
27 Correct 3 ms 1308 KB Output is correct
28 Correct 3 ms 1308 KB Output is correct
29 Correct 3 ms 1308 KB Output is correct
30 Correct 3 ms 1308 KB Output is correct
31 Correct 4 ms 1308 KB Output is correct
32 Correct 3 ms 1380 KB Output is correct
33 Correct 1455 ms 63436 KB Output is correct
34 Correct 1436 ms 63640 KB Output is correct
35 Correct 1443 ms 64156 KB Output is correct
36 Correct 1419 ms 64868 KB Output is correct
37 Correct 1440 ms 64068 KB Output is correct
38 Correct 1494 ms 64412 KB Output is correct
39 Correct 1489 ms 64048 KB Output is correct
40 Correct 1519 ms 64692 KB Output is correct
41 Correct 1455 ms 65156 KB Output is correct
42 Correct 1470 ms 64480 KB Output is correct
43 Correct 1372 ms 63920 KB Output is correct
44 Correct 1384 ms 63900 KB Output is correct
45 Correct 1425 ms 63860 KB Output is correct
46 Correct 1444 ms 63396 KB Output is correct
47 Correct 1441 ms 64128 KB Output is correct
48 Correct 1428 ms 63380 KB Output is correct
49 Correct 1388 ms 64292 KB Output is correct
50 Correct 1443 ms 63796 KB Output is correct
51 Correct 1377 ms 63904 KB Output is correct
52 Correct 1324 ms 64664 KB Output is correct
53 Correct 1328 ms 64648 KB Output is correct
54 Correct 1328 ms 63408 KB Output is correct
55 Correct 1455 ms 63644 KB Output is correct
56 Correct 1510 ms 65176 KB Output is correct
57 Correct 1492 ms 63368 KB Output is correct
58 Correct 1483 ms 65176 KB Output is correct
59 Correct 1487 ms 64000 KB Output is correct
60 Correct 1473 ms 65016 KB Output is correct
61 Correct 1443 ms 63584 KB Output is correct
62 Correct 1460 ms 63836 KB Output is correct
63 Correct 1540 ms 64668 KB Output is correct
64 Correct 1526 ms 65172 KB Output is correct
65 Correct 1516 ms 63836 KB Output is correct
66 Correct 1439 ms 63900 KB Output is correct
67 Correct 1487 ms 64664 KB Output is correct
68 Correct 1535 ms 64972 KB Output is correct
69 Correct 1591 ms 64584 KB Output is correct
70 Correct 1533 ms 65288 KB Output is correct
71 Correct 1437 ms 64936 KB Output is correct
72 Correct 1487 ms 64108 KB Output is correct
73 Correct 1467 ms 64156 KB Output is correct
74 Correct 1465 ms 64916 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1304 KB Output is correct
2 Correct 1 ms 1308 KB Output is correct
3 Correct 1 ms 1308 KB Output is correct
4 Correct 1 ms 1304 KB Output is correct
5 Correct 1 ms 1308 KB Output is correct
6 Correct 1 ms 1308 KB Output is correct
7 Correct 1 ms 1308 KB Output is correct
8 Correct 1 ms 1308 KB Output is correct
9 Correct 2 ms 1304 KB Output is correct
10 Correct 1 ms 1308 KB Output is correct
11 Correct 0 ms 604 KB Output is correct
12 Correct 0 ms 604 KB Output is correct
13 Correct 0 ms 604 KB Output is correct
14 Correct 0 ms 604 KB Output is correct
15 Correct 0 ms 604 KB Output is correct
16 Correct 4 ms 1308 KB Output is correct
17 Correct 3 ms 1308 KB Output is correct
18 Correct 3 ms 1304 KB Output is correct
19 Correct 3 ms 1376 KB Output is correct
20 Correct 3 ms 1304 KB Output is correct
21 Correct 3 ms 1308 KB Output is correct
22 Correct 3 ms 1192 KB Output is correct
23 Correct 4 ms 1192 KB Output is correct
24 Correct 3 ms 1308 KB Output is correct
25 Correct 3 ms 1308 KB Output is correct
26 Correct 1 ms 604 KB Output is correct
27 Correct 0 ms 604 KB Output is correct
28 Correct 0 ms 604 KB Output is correct
29 Correct 0 ms 604 KB Output is correct
30 Correct 1 ms 604 KB Output is correct
31 Correct 1 ms 604 KB Output is correct
32 Correct 0 ms 604 KB Output is correct
33 Correct 0 ms 604 KB Output is correct
34 Correct 0 ms 644 KB Output is correct
35 Correct 0 ms 604 KB Output is correct
36 Correct 3 ms 1376 KB Output is correct
37 Correct 3 ms 1308 KB Output is correct
38 Correct 3 ms 1308 KB Output is correct
39 Correct 3 ms 1308 KB Output is correct
40 Correct 3 ms 1308 KB Output is correct
41 Correct 3 ms 1308 KB Output is correct
42 Correct 3 ms 1308 KB Output is correct
43 Correct 3 ms 1308 KB Output is correct
44 Correct 3 ms 1308 KB Output is correct
45 Correct 3 ms 1308 KB Output is correct
46 Correct 4 ms 1308 KB Output is correct
47 Correct 3 ms 1380 KB Output is correct
48 Correct 1455 ms 63436 KB Output is correct
49 Correct 1436 ms 63640 KB Output is correct
50 Correct 1443 ms 64156 KB Output is correct
51 Correct 1419 ms 64868 KB Output is correct
52 Correct 1440 ms 64068 KB Output is correct
53 Correct 1494 ms 64412 KB Output is correct
54 Correct 1489 ms 64048 KB Output is correct
55 Correct 1519 ms 64692 KB Output is correct
56 Correct 1455 ms 65156 KB Output is correct
57 Correct 1470 ms 64480 KB Output is correct
58 Correct 1372 ms 63920 KB Output is correct
59 Correct 1384 ms 63900 KB Output is correct
60 Correct 1425 ms 63860 KB Output is correct
61 Correct 1444 ms 63396 KB Output is correct
62 Correct 1441 ms 64128 KB Output is correct
63 Correct 1428 ms 63380 KB Output is correct
64 Correct 1388 ms 64292 KB Output is correct
65 Correct 1443 ms 63796 KB Output is correct
66 Correct 1377 ms 63904 KB Output is correct
67 Correct 1324 ms 64664 KB Output is correct
68 Correct 1328 ms 64648 KB Output is correct
69 Correct 1328 ms 63408 KB Output is correct
70 Correct 1455 ms 63644 KB Output is correct
71 Correct 1510 ms 65176 KB Output is correct
72 Correct 1492 ms 63368 KB Output is correct
73 Correct 1483 ms 65176 KB Output is correct
74 Correct 1487 ms 64000 KB Output is correct
75 Correct 1473 ms 65016 KB Output is correct
76 Correct 1443 ms 63584 KB Output is correct
77 Correct 1460 ms 63836 KB Output is correct
78 Correct 1540 ms 64668 KB Output is correct
79 Correct 1526 ms 65172 KB Output is correct
80 Correct 1516 ms 63836 KB Output is correct
81 Correct 1439 ms 63900 KB Output is correct
82 Correct 1487 ms 64664 KB Output is correct
83 Correct 1535 ms 64972 KB Output is correct
84 Correct 1591 ms 64584 KB Output is correct
85 Correct 1533 ms 65288 KB Output is correct
86 Correct 1437 ms 64936 KB Output is correct
87 Correct 1487 ms 64108 KB Output is correct
88 Correct 1467 ms 64156 KB Output is correct
89 Correct 1465 ms 64916 KB Output is correct
90 Correct 1491 ms 63384 KB Output is correct
91 Correct 1442 ms 64232 KB Output is correct
92 Correct 1525 ms 63360 KB Output is correct
93 Correct 1448 ms 63828 KB Output is correct
94 Correct 1450 ms 65112 KB Output is correct
95 Correct 1481 ms 64132 KB Output is correct
96 Correct 1436 ms 64488 KB Output is correct
97 Correct 1466 ms 63888 KB Output is correct
98 Correct 1424 ms 64412 KB Output is correct
99 Correct 1481 ms 65436 KB Output is correct
100 Correct 533 ms 65416 KB Output is correct
101 Correct 549 ms 64280 KB Output is correct
102 Correct 544 ms 65156 KB Output is correct
103 Correct 607 ms 64960 KB Output is correct
104 Correct 565 ms 65428 KB Output is correct
105 Correct 660 ms 64036 KB Output is correct
106 Correct 666 ms 64416 KB Output is correct
107 Correct 645 ms 64772 KB Output is correct
108 Correct 681 ms 64924 KB Output is correct
109 Correct 637 ms 64992 KB Output is correct
110 Incorrect 847 ms 64488 KB Output isn't correct
111 Halted 0 ms 0 KB -