Submission #1079569

# Submission time Handle Problem Language Result Execution time Memory
1079569 2024-08-28T17:31:59 Z bleahbleah Comparing Plants (IOI20_plants) C++17
5 / 100
449 ms 70792 KB
#include "plants.h"
#include <bits/stdc++.h>
#define all(x) (x).begin(),(x).end()

using namespace std;

using ll = long long;
#define sz(x) ((int)(x).size())

int K, N;
const int nmax = 2e5 + 5;

template<typename T>
struct AINT {
   vector<T> aint;
   int n;
   void init(int n_) {
      n = n_;
      aint.assign(2 * n + 5, T());
   }
   template<int dir = 0, class CB> void walk(CB&& cb) { walk(cb, 0, n - 1); }
   template<int dir = 0, class CB> void walk(CB&& cb, int l, int r) { walk(cb, l, r, 1, 0, n - 1); }
   template<int dir = 0, class CB> void walk(CB&& cb, int l, int r, int node, int cl, int cr) {  
      if(cr < l || r < cl) return;
      if(l <= cl && cr <= r && !cb(aint[node], cl, cr)) return;
      int mid = (cl + cr) >> 1, L = node + 1, R = node + (mid - cl + 1) * 2;
      aint[node].push(aint[L], aint[R]);
      if(dir == 0) { walk(cb, l, r, L, cl, mid); walk(cb, l, r, R, mid + 1, cr); }
      if(dir == 1) { walk(cb, l, r, R, mid + 1, cr); walk(cb, l, r, L, cl, mid); }
      aint[node].pull(aint[L], aint[R]);
   }
};

struct MinFindUnit {
   int mn;
   int lazy = 0;
   void push(MinFindUnit& L, MinFindUnit& R) {
      if(lazy == 0) return;
      L.lazy += lazy;
      R.lazy += lazy;
      R.mn += lazy;
      L.mn += lazy;
      lazy = 0;
      return;
   }
   void pull(MinFindUnit& L, MinFindUnit& R) {
      mn = min(L.mn, R.mn);
      return;
   }
};

struct MinFind : AINT<MinFindUnit> {
   int query_next(int t, int limit) {
      if(aint[1].mn > limit) return -1;
      for(int itt = 0; itt < 2; itt++) {
         walk([&](auto& a, int cl, int cr) {
            if(t < cl) return 0;
            if(cr < t) return 0;
            if(a.mn > limit) {
               t = cr + 1;
               return 0;
            }
            if(cl == cr) { return 0; }
            return 1;
         }, t, n - 1);
         if(t == n) t = 0;
      }
      return t;
   }
   
   
   int query_prev(int t, int limit) {
      if(aint[1].mn > limit) return -1;
      for(int itt = 0; itt < 2; itt++) {
         walk<1>([&](auto& a, int cl, int cr) {
            if(t < cl) return 0;
            if(cr < t) return 0;
            if(a.mn > limit) {
               t = cl - 1;
               return 0;
            }
            if(cl == cr) { return 0; }
            return 1;
         }, 0, t);
         if(t == -1) t = n - 1;
      }
      return t;
   }
   
   void add(int l, int r, int x) {
      walk([&](auto& a, int cl, int cr) {
         a.mn += x;
         a.lazy += x;
         return 0;
      }, l, r);
   }
   void set(int p, int x) {
      walk([&](auto& a, int cl, int cr) {
         if(cl != cr) return 1;
         a.mn = x;
         a.lazy = 0;
         return 0;
      }, p, p);
   }
   void set(int l, int r, int x) {
      walk([&](auto& a, int cl, int cr) {
         if(cl != cr) return 1;
         a.mn = x;
         a.lazy = 0;
         return 0;
      }, l, r);
   }
};

namespace Queue {
   int next[nmax];
   MinFind inside;
   
   
   auto rdist = [](int x, int d) {
      return d < x? N - x + d : d - x;
   };
   auto ldist = [](int x, int d) {
      return d <= x? x - d : x + N - d;
   };
   
   set<int> heads;
   void init() {
      inside.init(N);
      inside.set(0, N - 1, 1);
      //for(int i = 0; i < N; i++)
         //inside.walk([&](auto& a, int cl, int cr) { cerr << a.mn << ' '; return 0; }, i, i); cerr << '\n';
   }
   void insert(int node) {
      //for(int i = 0; i < N; i++)
         //inside.walk([&](auto& a, int cl, int cr) { cerr << a.mn << ' '; return 0; }, i, i); cerr << '\n';
      heads.emplace(node);
      inside.set(node, 0);
      next[node] = -1;
      //for(int i = 0; i < N; i++)
         //inside.walk([&](auto& a, int cl, int cr) { cerr << a.mn << ' '; return 0; }, i, i); cerr << '\n';
      
      //cerr << "insert " << node << '\n';
      
      int nx = inside.query_next((node + 1) % N, 0);
      int pr = inside.query_prev((node - 1 + N) % N, 0);
      
      //cerr << nx << ' ' << pr << '\n';
      //inside.walk([&](auto& a, int cl, int cr) { cerr << a.mn << '\n'; return 0; }, nx, nx);
      //inside.walk([&](auto& a, int cl, int cr) { cerr << a.mn << '\n'; return 0; }, pr, pr);
      //cerr << '\n';
      
      if(nx != node && rdist(node, nx) < K) {
         next[node] = nx;
         if(heads.count(nx)) heads.erase(nx);
      }
      if(pr != node && ldist(node, pr) < K) {
         heads.erase(node);
         next[pr] = node;
      }
   }
   
   vector<int> prune() {
      vector<int> rez;
      for(auto x : heads)
         rez.emplace_back(x), inside.set(x, 1);
      heads.clear();
      for(auto x : rez)
         if(next[x] != -1) heads.emplace(next[x]);
      return rez;
   }
}

vector<int> topsort;
#define left ofia
#define right goa
int left[nmax][18], jumpl[nmax][18];
int right[nmax][18], jumpr[nmax][18];

void init(int k__, std::vector<int> r) {
   auto T = r;
   K = k__;
   N = sz(r);
   topsort.resize(N);
   Queue::init();
   
   vector<int> erased(N, 0);
   for(int i = 0; i < sz(r); i++) 
      if(r[i] == 0) erased[i] = 1, Queue::insert(i);
   
   int color = 0;
   while(sz(Queue::heads)) {
      auto rem = Queue::prune();
      ++color;
      for(auto x : rem) topsort[x] = color;
      
      for(auto x : rem) {
         for(int i = (x - 1 + N) % N, d = 1; d < K; d++, i = (i - 1 + N) % N) {
            if(erased[i]) continue;
            r[i]--;
            if(r[i] == 0) erased[i] = 1, Queue::insert(i);
         }
      }
   }
   
   for(int x = 0; x < sz(r); x++) {
      int mn = -1;
      jumpl[x][0] = 0;
      for(int i = (x - 1 + N) % N, d = 1; d < K; d++, i = (i - 1 + N) % N) {
         if(topsort[i] > topsort[x])
            mn = (mn == -1? i : topsort[mn] < topsort[i]? mn : i);
      }
      left[x][0] = mn == -1? x : mn;
      jumpl[x][0] = left[x][0] <= x? x - left[x][0] : x + N - left[x][0];
      
      mn = -1;
      jumpr[x][0] = 0;
      for(int i = (x + 1 + N) % N, d = 1; d < K; d++, i = (i + 1 + N) % N) {
         if(topsort[i] > topsort[x])
            mn = (mn == -1? i : topsort[mn] < topsort[i]? mn : i);
      }
      right[x][0] = mn == -1? x : mn;
      jumpr[x][0] = (right[x][0] >= x? right[x][0] - x : N - x + right[x][0]);
   }
   for(int step = 1; step < 18; step++)
      for(int i = 0; i < N; i++)
         left[i][step] = left[left[i][step - 1]][step - 1], jumpl[i][step] = jumpl[i][step - 1] + jumpl[left[i][step - 1]][step - 1],
         right[i][step] = right[right[i][step - 1]][step - 1], jumpr[i][step] = jumpr[i][step - 1] + jumpr[right[i][step - 1]][step - 1];
      
   
	return;
}
 
bool compare_smaller(int x, int y) {
   auto rdist = [&](int d) {
      return d < x? N - x + d : d - x;
   };
   auto ldist = [&](int d) {
      return d <= x? x - d : x + N - d;
   };
   
   int st = x, buffer = rdist(y);
   for(int i = 17; i >= 0; i--) {
      if(buffer < jumpr[st][i]) continue;
      buffer -= jumpr[st][i];
      st = right[st][i];
   }
   if(st == y) return 1;
   if(rdist(y) - rdist(st) < K && topsort[y] > topsort[st]) return 1;
   
   st = x;
   buffer = ldist(y);
   for(int i = 17; i >= 0; i--) {
      if(buffer < jumpl[st][i]) continue;
      buffer -= jumpl[st][i];
      st = left[st][i];
   }
   
   if(st == y) return 1;
   if(ldist(y) - ldist(st) < K && topsort[y] > topsort[st]) return 1;
   return 0;
}
 
 
int compare_plants(int x, int y) {
   return compare_smaller(x, y)? 1 : compare_smaller(y, x)? -1 : 0;
}
 
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 58 ms 10164 KB Output is correct
7 Correct 99 ms 17748 KB Output is correct
8 Correct 435 ms 70792 KB Output is correct
9 Correct 449 ms 69972 KB Output is correct
10 Correct 427 ms 69716 KB Output is correct
11 Correct 411 ms 69712 KB Output is correct
12 Correct 413 ms 69712 KB Output is correct
13 Correct 350 ms 69716 KB Output is correct
14 Correct 447 ms 69716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Incorrect 1 ms 6492 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Incorrect 1 ms 6492 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Incorrect 1 ms 6492 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6488 KB Output is correct
6 Incorrect 2 ms 6488 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Incorrect 2 ms 6492 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 6492 KB Output is correct
2 Correct 1 ms 6492 KB Output is correct
3 Correct 1 ms 6492 KB Output is correct
4 Correct 1 ms 6492 KB Output is correct
5 Correct 1 ms 6492 KB Output is correct
6 Correct 58 ms 10164 KB Output is correct
7 Correct 99 ms 17748 KB Output is correct
8 Correct 435 ms 70792 KB Output is correct
9 Correct 449 ms 69972 KB Output is correct
10 Correct 427 ms 69716 KB Output is correct
11 Correct 411 ms 69712 KB Output is correct
12 Correct 413 ms 69712 KB Output is correct
13 Correct 350 ms 69716 KB Output is correct
14 Correct 447 ms 69716 KB Output is correct
15 Correct 1 ms 6492 KB Output is correct
16 Correct 1 ms 6492 KB Output is correct
17 Correct 1 ms 6492 KB Output is correct
18 Correct 1 ms 6492 KB Output is correct
19 Incorrect 1 ms 6492 KB Output isn't correct
20 Halted 0 ms 0 KB -