Submission #107849

# Submission time Handle Problem Language Result Execution time Memory
107849 2019-04-26T03:48:37 Z qkxwsm Hard route (IZhO17_road) C++14
100 / 100
1949 ms 92820 KB
//clever
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();

struct custom_hash
{
	template<class T>
	unsigned long long operator()(T v) const
	{
		unsigned long long x = v;
		x += FIXED_RANDOM;
		// x += 11400714819323198485ull;
		// x = (x ^ (x >> 30)) * 13787848793156543929ull;
		x = (x ^ (x >> 27)) * 10723151780598845931ull;
		return x ^ (x >> 31);
	}
};

template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;

template<class T>
T randomize(T mod)
{
	return (uniform_int_distribution<T>(0, mod - 1))(rng);
}
template<class T>
void readi(T &x)
{
	x = 0;
	bool negative = false;
	char c = ' ';
	while (c < '-')
	{
		c = getchar();
	}
	if (c == '-')
	{
		negative = true;
		c = getchar();
	}
	while (c >= '0')
	{
		x = x * 10 + (c - '0');
		c = getchar();
	}
	if (negative)
	{
		x = -x;
	}
}
template<class T>
void printi(T output)
{
	if (output == 0)
	{
		putchar('0');
		return;
	}
	if (output < 0)
	{
		putchar('-');
		output = -output;
	}
	int buf[20], n = 0;
	while(output)
	{
		buf[n] = ((output % 10));
		output /= 10;
		n++;
	}
	for (n--; n >= 0; n--)
	{
		putchar(buf[n] + '0');
	}
	return;
}
template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
	return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
	if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
	return (b ? gcd(b, a % b) : a);
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define PB push_back
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << (x) << endl
#define SZ(x) ((int) ((x).size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) (x).begin(), (x).end()

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-9;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 500013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;

int N;
vi edge[MAXN];
pll ans = {0, 0};
int depth[MAXN];
pll dp[MAXN];
int dist[2][MAXN];
int parent[MAXN];
int S, T;
bool flag;
bitset<MAXN> diam;

void comb(pll &p, pll q)
{
	if (q.se == 0) return;
	if (q.fi > p.fi) p = q;
	else if (q.fi == p.fi) p.se += q.se;
}
void gendist(int u)
{
	FOR(i, 0, N) depth[i] = INF;
	depth[u] = 0;
	vi nodes;
	nodes.PB(u);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (depth[w] != INF) continue;
			depth[w] = depth[v] + 1;
			nodes.PB(w);
		}
	}
	return;
}
void dfs(int u, int p)
{
	parent[u] = p;
	if (SZ(edge[u]) == 1)
	{
		dp[u] = MP(dist[flag][u], 1);
		return;
	}
	dp[u] = MP(0, 0);
	for (int v : edge[u])
	{
		if (v == p) continue;
		dfs(v, u);
		comb(dp[u], dp[v]);
	}
	ll tot = 0; int freq = 0;
	for (int v : edge[u])
	{
		if (v == p) continue;
		if (dp[v].fi == dp[u].fi)
		{
			freq++;
			tot += dp[v].se;
		}
	}
	pll opt = {0, 0};
	if (freq > 1)
	{
		opt.fi = 1ll * dist[flag][u] * (dp[u].fi + dp[u].fi - 2 * dist[flag][u]);
		for (int v : edge[u])
		{
			if (v == p) continue;
			if (dp[v].fi == dp[u].fi)
			{
				opt.se += (tot - dp[v].se) * (dp[v].se);
			}
		}
		opt.se /= 2;
	}
	else if (freq == 1)
	{
		for (int v : edge[u])
		{
			if (v == p) continue;
			if (dp[v].fi != dp[u].fi)
			{
				comb(opt, dp[v]);
			}
		}
		opt.se *= tot;
		opt.fi = 1ll * dist[flag][u] * (opt.fi + dp[u].fi - 2 * dist[flag][u]);
	}
	comb(ans, opt);
}
void dfs3(int u)
{
	if (SZ(edge[u]) == 1)
	{
		dp[u] = MP(dist[flag][u], 1);
		return;
	}
	dp[u] = MP(0, 0);
	for (int v : edge[u])
	{
		if (diam[v] || v == parent[u]) continue;
		parent[v] = u;
		dfs3(v);
		comb(dp[u], dp[v]);
	}
	if (dist[0][u] == dist[1][u])
	{
		ll tot = 0; int freq = 0;
		for (int v : edge[u])
		{
			if (diam[v] || v == parent[u]) continue;
			if (dp[v].fi == dp[u].fi)
			{
				freq++;
				tot += dp[v].se;
			}
		}
		pll opt = {0, 0};
		if (freq > 1)
		{
			opt.fi = 1ll * dist[flag][u] * (dp[u].fi + dp[u].fi - 2 * dist[flag][u]);
			for (int v : edge[u])
			{
				if (diam[v] || v == parent[u]) continue;
				if (dp[v].fi == dp[u].fi)
				{
					opt.se += (tot - dp[v].se) * (dp[v].se);
				}
			}
			opt.se /= 2;
		}
		else if (freq == 1)
		{
			//find the second biggest!
			for (int v : edge[u])
			{
				if (diam[v] || v == parent[u]) continue;
				if (dp[v].fi != dp[u].fi)
				{
					comb(opt, dp[v]);
				}
			}
			opt.se *= tot;
			opt.fi = 1ll * dist[flag][u] * (opt.fi + dp[u].fi - 2 * dist[flag][u]);
		}
		if (opt.fi == ans.fi) ans.se -= opt.se;
	}
}
void mark(int u, int p)
{
	for (int v : edge[u])
	{
		if (diam[v] || v == p) continue;
		depth[v] = depth[u] + 1;
		mark(v, u);
	}
}

int32_t main()
{
	ios_base::sync_with_stdio(0); cin.tie(0);
	// cout << fixed << setprecision(10);
	// cerr << fixed << setprecision(10);
	// if (fopen("file.in", "r"))
	// {
	// 	freopen ("file.in", "r", stdin);
	// 	freopen ("file.out", "w", stdout);
	// }
	cin >> N;
	FOR(i, 0, N - 1)
	{
		int u, v;
		cin >> u >> v;
		u--; v--;
		edge[u].PB(v); edge[v].PB(u);
	}
	gendist(0);
	FOR(i, 0, N)
	{
		if (depth[i] > depth[S])
		{
			S = i;
		}
	}
	vi nodes;
	nodes.PB(S);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (w == S || dist[0][w]) continue;
			dist[0][w] = dist[0][v] + 1;
			nodes.PB(w);
		}
	}
	FOR(i, 0, N)
	{
		if (dist[0][i] > dist[0][T]) T = i;
	}
	nodes.PB(T);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (w == T || dist[1][w]) continue;
			dist[1][w] = dist[1][v] + 1;
			nodes.PB(w);
		}
	}
	flag = true;
	for (int v : edge[T])
	{
		dfs(v, T);
	}
	parent[S] = N;
	flag = false;
	for (int v : edge[S])
	{
		dfs(v, S);
	}
	vi lol;
	int tmp = T;
	while(tmp != S)
	{
		diam[tmp] = true;
		lol.PB(tmp);
		tmp = parent[tmp];
	}
	diam[tmp] = true;
	lol.PB(tmp);
	FOR(i, 0, N) depth[i] = 0;
	FOR(i, 0, N)
	{
		if (!diam[i]) continue;
		for (int v : edge[i])
		{
			if (diam[v]) continue;
			depth[v] = 1;
			mark(v, i);
		}
	}
	tmp = 0;
	FOR(i, 0, N) ckmax(tmp, depth[i]);
	comb(ans, {1ll * dist[0][T] * tmp, 1});
	if (SZ(lol) % 2)
	{
		int mid = lol[SZ(lol) / 2];
		diam[mid] = false;
		FOR(i, 0, N) parent[i] = N;
		dfs3(mid);
	}
	cout << ans.fi << ' ' << ans.se << '\n';
	// cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
	return 0;
}
/* READ READ READ
* int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive
* reread the problem, try small cases
* note down possible sources of error as you go
* do smth instead of nothing
*/
# Verdict Execution time Memory Grader output
1 Correct 15 ms 12160 KB Output is correct
2 Correct 14 ms 12160 KB Output is correct
3 Correct 16 ms 12160 KB Output is correct
4 Correct 14 ms 12160 KB Output is correct
5 Correct 14 ms 12160 KB Output is correct
6 Correct 16 ms 12160 KB Output is correct
7 Correct 17 ms 12160 KB Output is correct
8 Correct 15 ms 12160 KB Output is correct
9 Correct 15 ms 12160 KB Output is correct
10 Correct 14 ms 12160 KB Output is correct
11 Correct 15 ms 12160 KB Output is correct
12 Correct 13 ms 12160 KB Output is correct
13 Correct 15 ms 12160 KB Output is correct
14 Correct 14 ms 12160 KB Output is correct
15 Correct 14 ms 12160 KB Output is correct
16 Correct 17 ms 12160 KB Output is correct
17 Correct 14 ms 12160 KB Output is correct
18 Correct 13 ms 12160 KB Output is correct
19 Correct 14 ms 12160 KB Output is correct
20 Correct 13 ms 12160 KB Output is correct
21 Correct 12 ms 12160 KB Output is correct
22 Correct 13 ms 12132 KB Output is correct
23 Correct 16 ms 12160 KB Output is correct
24 Correct 13 ms 12160 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 12160 KB Output is correct
2 Correct 14 ms 12160 KB Output is correct
3 Correct 16 ms 12160 KB Output is correct
4 Correct 14 ms 12160 KB Output is correct
5 Correct 14 ms 12160 KB Output is correct
6 Correct 16 ms 12160 KB Output is correct
7 Correct 17 ms 12160 KB Output is correct
8 Correct 15 ms 12160 KB Output is correct
9 Correct 15 ms 12160 KB Output is correct
10 Correct 14 ms 12160 KB Output is correct
11 Correct 15 ms 12160 KB Output is correct
12 Correct 13 ms 12160 KB Output is correct
13 Correct 15 ms 12160 KB Output is correct
14 Correct 14 ms 12160 KB Output is correct
15 Correct 14 ms 12160 KB Output is correct
16 Correct 17 ms 12160 KB Output is correct
17 Correct 14 ms 12160 KB Output is correct
18 Correct 13 ms 12160 KB Output is correct
19 Correct 14 ms 12160 KB Output is correct
20 Correct 13 ms 12160 KB Output is correct
21 Correct 12 ms 12160 KB Output is correct
22 Correct 13 ms 12132 KB Output is correct
23 Correct 16 ms 12160 KB Output is correct
24 Correct 13 ms 12160 KB Output is correct
25 Correct 18 ms 12800 KB Output is correct
26 Correct 19 ms 12672 KB Output is correct
27 Correct 22 ms 12792 KB Output is correct
28 Correct 17 ms 12800 KB Output is correct
29 Correct 16 ms 12672 KB Output is correct
30 Correct 16 ms 12672 KB Output is correct
31 Correct 16 ms 12672 KB Output is correct
32 Correct 19 ms 12800 KB Output is correct
33 Correct 17 ms 12772 KB Output is correct
34 Correct 16 ms 12800 KB Output is correct
35 Correct 21 ms 12800 KB Output is correct
36 Correct 22 ms 12796 KB Output is correct
37 Correct 19 ms 13056 KB Output is correct
38 Correct 23 ms 12928 KB Output is correct
39 Correct 18 ms 12672 KB Output is correct
40 Correct 17 ms 12544 KB Output is correct
41 Correct 17 ms 12516 KB Output is correct
42 Correct 16 ms 12416 KB Output is correct
43 Correct 17 ms 12416 KB Output is correct
44 Correct 17 ms 12436 KB Output is correct
45 Correct 17 ms 12416 KB Output is correct
46 Correct 20 ms 12416 KB Output is correct
47 Correct 18 ms 12416 KB Output is correct
48 Correct 15 ms 12544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 12160 KB Output is correct
2 Correct 14 ms 12160 KB Output is correct
3 Correct 16 ms 12160 KB Output is correct
4 Correct 14 ms 12160 KB Output is correct
5 Correct 14 ms 12160 KB Output is correct
6 Correct 16 ms 12160 KB Output is correct
7 Correct 17 ms 12160 KB Output is correct
8 Correct 15 ms 12160 KB Output is correct
9 Correct 15 ms 12160 KB Output is correct
10 Correct 14 ms 12160 KB Output is correct
11 Correct 15 ms 12160 KB Output is correct
12 Correct 13 ms 12160 KB Output is correct
13 Correct 15 ms 12160 KB Output is correct
14 Correct 14 ms 12160 KB Output is correct
15 Correct 14 ms 12160 KB Output is correct
16 Correct 17 ms 12160 KB Output is correct
17 Correct 14 ms 12160 KB Output is correct
18 Correct 13 ms 12160 KB Output is correct
19 Correct 14 ms 12160 KB Output is correct
20 Correct 13 ms 12160 KB Output is correct
21 Correct 12 ms 12160 KB Output is correct
22 Correct 13 ms 12132 KB Output is correct
23 Correct 16 ms 12160 KB Output is correct
24 Correct 13 ms 12160 KB Output is correct
25 Correct 18 ms 12800 KB Output is correct
26 Correct 19 ms 12672 KB Output is correct
27 Correct 22 ms 12792 KB Output is correct
28 Correct 17 ms 12800 KB Output is correct
29 Correct 16 ms 12672 KB Output is correct
30 Correct 16 ms 12672 KB Output is correct
31 Correct 16 ms 12672 KB Output is correct
32 Correct 19 ms 12800 KB Output is correct
33 Correct 17 ms 12772 KB Output is correct
34 Correct 16 ms 12800 KB Output is correct
35 Correct 21 ms 12800 KB Output is correct
36 Correct 22 ms 12796 KB Output is correct
37 Correct 19 ms 13056 KB Output is correct
38 Correct 23 ms 12928 KB Output is correct
39 Correct 18 ms 12672 KB Output is correct
40 Correct 17 ms 12544 KB Output is correct
41 Correct 17 ms 12516 KB Output is correct
42 Correct 16 ms 12416 KB Output is correct
43 Correct 17 ms 12416 KB Output is correct
44 Correct 17 ms 12436 KB Output is correct
45 Correct 17 ms 12416 KB Output is correct
46 Correct 20 ms 12416 KB Output is correct
47 Correct 18 ms 12416 KB Output is correct
48 Correct 15 ms 12544 KB Output is correct
49 Correct 1207 ms 68416 KB Output is correct
50 Correct 1170 ms 68544 KB Output is correct
51 Correct 1233 ms 68436 KB Output is correct
52 Correct 1206 ms 68512 KB Output is correct
53 Correct 901 ms 70148 KB Output is correct
54 Correct 887 ms 69608 KB Output is correct
55 Correct 953 ms 69700 KB Output is correct
56 Correct 921 ms 69504 KB Output is correct
57 Correct 1074 ms 81008 KB Output is correct
58 Correct 1169 ms 80896 KB Output is correct
59 Correct 1223 ms 81104 KB Output is correct
60 Correct 1177 ms 81180 KB Output is correct
61 Correct 1700 ms 92796 KB Output is correct
62 Correct 1669 ms 92820 KB Output is correct
63 Correct 1821 ms 63472 KB Output is correct
64 Correct 1797 ms 53548 KB Output is correct
65 Correct 1896 ms 55800 KB Output is correct
66 Correct 1891 ms 52884 KB Output is correct
67 Correct 1863 ms 51704 KB Output is correct
68 Correct 1747 ms 51224 KB Output is correct
69 Correct 1810 ms 50936 KB Output is correct
70 Correct 1847 ms 50808 KB Output is correct
71 Correct 1871 ms 50644 KB Output is correct
72 Correct 1888 ms 50772 KB Output is correct
73 Correct 1949 ms 50996 KB Output is correct
74 Correct 1758 ms 51116 KB Output is correct
75 Correct 1739 ms 51496 KB Output is correct
76 Correct 1619 ms 51916 KB Output is correct
77 Correct 1275 ms 53536 KB Output is correct
78 Correct 710 ms 56884 KB Output is correct