Submission #107844

# Submission time Handle Problem Language Result Execution time Memory
107844 2019-04-26T03:27:33 Z qkxwsm Hard route (IZhO17_road) C++14
52 / 100
2000 ms 100568 KB
//clever
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();

struct custom_hash
{
	template<class T>
	unsigned long long operator()(T v) const
	{
		unsigned long long x = v;
		x += FIXED_RANDOM;
		// x += 11400714819323198485ull;
		// x = (x ^ (x >> 30)) * 13787848793156543929ull;
		x = (x ^ (x >> 27)) * 10723151780598845931ull;
		return x ^ (x >> 31);
	}
};

template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;

template<class T>
T randomize(T mod)
{
	return (uniform_int_distribution<T>(0, mod - 1))(rng);
}
template<class T>
void readi(T &x)
{
	x = 0;
	bool negative = false;
	char c = ' ';
	while (c < '-')
	{
		c = getchar();
	}
	if (c == '-')
	{
		negative = true;
		c = getchar();
	}
	while (c >= '0')
	{
		x = x * 10 + (c - '0');
		c = getchar();
	}
	if (negative)
	{
		x = -x;
	}
}
template<class T>
void printi(T output)
{
	if (output == 0)
	{
		putchar('0');
		return;
	}
	if (output < 0)
	{
		putchar('-');
		output = -output;
	}
	int buf[20], n = 0;
	while(output)
	{
		buf[n] = ((output % 10));
		output /= 10;
		n++;
	}
	for (n--; n >= 0; n--)
	{
		putchar(buf[n] + '0');
	}
	return;
}
template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
	return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
	if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
	return (b ? gcd(b, a % b) : a);
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define PB push_back
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << (x) << endl
#define SZ(x) ((int) ((x).size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) (x).begin(), (x).end()

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-9;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 500013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;

int N;
vi edge[MAXN];
pll ans = {0, 0};
int depth[MAXN];
pll dp[MAXN];
int dist[2][MAXN];
int parent[MAXN];
int S, T;
bool flag;
bitset<MAXN> diam;

void comb(pll &p, pll q)
{
	if (q.se == 0) return;
	if (q.fi > p.fi) p = q;
	else if (q.fi == p.fi) p.se += q.se;
}
void gendist(int u)
{
	FOR(i, 0, N) depth[i] = INF;
	depth[u] = 0;
	vi nodes;
	nodes.PB(u);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (depth[w] != INF) continue;
			depth[w] = depth[v] + 1;
			nodes.PB(w);
		}
	}
	return;
}
void dfs(int u, int p)
{
	parent[u] = p;
	if (SZ(edge[u]) == 1)
	{
		dp[u] = MP(dist[flag][u], 1);
		return;
	}
	dp[u] = MP(0, 0);
	for (int v : edge[u])
	{
		if (v == p) continue;
		dfs(v, u);
		comb(dp[u], dp[v]);
	}
	vi biggest;
	for (int v : edge[u])
	{
		if (v == p) continue;
		if (dp[v].fi == dp[u].fi)
		{
			biggest.PB(dp[v].se);
		}
	}
	pll opt = {0, 0};
	if (SZ(biggest) > 1)
	{
		opt.fi = 1ll * dist[flag][u] * (dp[u].fi + dp[u].fi - 2 * dist[flag][u]);
		ll tot = 0;
		for (int x : biggest) tot += x;
		for (int x : biggest) opt.se += (tot - x) * x;
		opt.se /= 2;
	}
	else if (!biggest.empty())
	{
		//find the second biggest!
		for (int v : edge[u])
		{
			if (v == p) continue;
			if (dp[v].fi != dp[u].fi)
			{
				comb(opt, dp[v]);
			}
		}
		opt.se *= biggest[0];
		opt.fi = 1ll * dist[flag][u] * (opt.fi + dp[u].fi - 2 * dist[flag][u]);
	}
	comb(ans, opt);
}
void dfs3(int u)
{
	if (SZ(edge[u]) == 1)
	{
		dp[u] = MP(dist[flag][u], 1);
		return;
	}
	dp[u] = MP(0, 0);
	for (int v : edge[u])
	{
		if (diam[v] || v == parent[u]) continue;
		parent[v] = u;
		dfs3(v);
		comb(dp[u], dp[v]);
	}
	if (dist[0][u] == dist[1][u])
	{
		vi biggest;
		for (int v : edge[u])
		{
			if (diam[v] || v == parent[u]) continue;
			if (dp[v].fi == dp[u].fi)
			{
				biggest.PB(dp[v].se);
			}
		}
		pll opt = {0, 0};
		if (SZ(biggest) > 1)
		{
			opt.fi = 1ll * dist[flag][u] * (dp[u].fi + dp[u].fi - 2 * dist[flag][u]);
			ll tot = 0;
			for (int x : biggest) tot += x;
			for (int x : biggest) opt.se += (tot - x) * x;
			opt.se /= 2;
		}
		else if (!biggest.empty())
		{
			for (int v : edge[u])
			{
				if (diam[v] || v == parent[u]) continue;
				if (dp[v].fi != dp[u].fi)
				{
					comb(opt, dp[v]);
				}
			}
			opt.se *= biggest[0];
			opt.fi = 1ll * dist[flag][u] * (opt.fi + dp[u].fi - 2 * dist[flag][u]);
		}
		if (opt.fi == ans.fi)
		{
			ans.se -= opt.se;
		}
	}
}
void mark(int u, int p)
{
	for (int v : edge[u])
	{
		if (diam[v] || v == p) continue;
		depth[v] = depth[u] + 1;
		mark(v, u);
	}
}

int32_t main()
{
	ios_base::sync_with_stdio(0); cin.tie(0);
	// cout << fixed << setprecision(10);
	// cerr << fixed << setprecision(10);
	// if (fopen("file.in", "r"))
	// {
	// 	freopen ("file.in", "r", stdin);
	// 	freopen ("file.out", "w", stdout);
	// }
	cin >> N;
	FOR(i, 0, N - 1)
	{
		int u, v;
		cin >> u >> v;
		u--; v--;
		edge[u].PB(v); edge[v].PB(u);
	}
	gendist(0);
	FOR(i, 0, N)
	{
		if (depth[i] > depth[S])
		{
			S = i;
		}
	}
	vi nodes;
	nodes.PB(S);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (w == S || dist[0][w]) continue;
			dist[0][w] = dist[0][v] + 1;
			nodes.PB(w);
		}
	}
	FOR(i, 0, N)
	{
		if (dist[0][i] > dist[0][T]) T = i;
	}
	nodes.PB(T);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (w == T || dist[1][w]) continue;
			dist[1][w] = dist[1][v] + 1;
			nodes.PB(w);
		}
	}
	flag = true;
	for (int v : edge[T])
	{
		dfs(v, T);
	}
	parent[S] = N;
	flag = false;
	for (int v : edge[S])
	{
		dfs(v, S);
	}
	vi lol;
	int tmp = T;
	while(tmp != S)
	{
		diam[tmp] = true;
		lol.PB(tmp);
		tmp = parent[tmp];
	}
	diam[tmp] = true;
	lol.PB(tmp);
	FOR(i, 0, N) depth[i] = 0;
	FOR(i, 0, N)
	{
		if (!diam[i]) continue;
		for (int v : edge[i])
		{
			if (diam[v]) continue;
			depth[v] = 1;
			mark(v, i);
		}
	}
	tmp = 0;
	FOR(i, 0, N) ckmax(tmp, depth[i]);
	comb(ans, {dist[0][T] * tmp, 1});
	if (SZ(lol) % 2)
	{
		int mid = lol[SZ(lol) / 2];
		diam[mid] = false;
		FOR(i, 0, N) parent[i] = N;
		dfs3(mid);
	}
	cout << ans.fi << ' ' << ans.se << '\n';
	// cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
	return 0;
}
/* READ READ READ
* int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive
* reread the problem, try small cases
* note down possible sources of error as you go
* do smth instead of nothing
*/
# Verdict Execution time Memory Grader output
1 Correct 16 ms 12160 KB Output is correct
2 Correct 13 ms 12160 KB Output is correct
3 Correct 13 ms 12160 KB Output is correct
4 Correct 13 ms 12160 KB Output is correct
5 Correct 13 ms 12160 KB Output is correct
6 Correct 13 ms 12160 KB Output is correct
7 Correct 13 ms 12192 KB Output is correct
8 Correct 15 ms 12160 KB Output is correct
9 Correct 15 ms 12160 KB Output is correct
10 Correct 13 ms 12160 KB Output is correct
11 Correct 13 ms 12160 KB Output is correct
12 Correct 13 ms 12160 KB Output is correct
13 Correct 16 ms 12160 KB Output is correct
14 Correct 13 ms 12160 KB Output is correct
15 Correct 13 ms 12160 KB Output is correct
16 Correct 12 ms 12160 KB Output is correct
17 Correct 13 ms 12152 KB Output is correct
18 Correct 15 ms 12160 KB Output is correct
19 Correct 16 ms 12160 KB Output is correct
20 Correct 13 ms 12160 KB Output is correct
21 Correct 14 ms 12160 KB Output is correct
22 Correct 13 ms 12160 KB Output is correct
23 Correct 17 ms 12160 KB Output is correct
24 Correct 14 ms 12160 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 12160 KB Output is correct
2 Correct 13 ms 12160 KB Output is correct
3 Correct 13 ms 12160 KB Output is correct
4 Correct 13 ms 12160 KB Output is correct
5 Correct 13 ms 12160 KB Output is correct
6 Correct 13 ms 12160 KB Output is correct
7 Correct 13 ms 12192 KB Output is correct
8 Correct 15 ms 12160 KB Output is correct
9 Correct 15 ms 12160 KB Output is correct
10 Correct 13 ms 12160 KB Output is correct
11 Correct 13 ms 12160 KB Output is correct
12 Correct 13 ms 12160 KB Output is correct
13 Correct 16 ms 12160 KB Output is correct
14 Correct 13 ms 12160 KB Output is correct
15 Correct 13 ms 12160 KB Output is correct
16 Correct 12 ms 12160 KB Output is correct
17 Correct 13 ms 12152 KB Output is correct
18 Correct 15 ms 12160 KB Output is correct
19 Correct 16 ms 12160 KB Output is correct
20 Correct 13 ms 12160 KB Output is correct
21 Correct 14 ms 12160 KB Output is correct
22 Correct 13 ms 12160 KB Output is correct
23 Correct 17 ms 12160 KB Output is correct
24 Correct 14 ms 12160 KB Output is correct
25 Correct 18 ms 12800 KB Output is correct
26 Correct 20 ms 12672 KB Output is correct
27 Correct 17 ms 12828 KB Output is correct
28 Correct 20 ms 12800 KB Output is correct
29 Correct 19 ms 12800 KB Output is correct
30 Correct 17 ms 12800 KB Output is correct
31 Correct 18 ms 12800 KB Output is correct
32 Correct 18 ms 12800 KB Output is correct
33 Correct 17 ms 12928 KB Output is correct
34 Correct 17 ms 12928 KB Output is correct
35 Correct 21 ms 12928 KB Output is correct
36 Correct 19 ms 12928 KB Output is correct
37 Correct 22 ms 13056 KB Output is correct
38 Correct 20 ms 13056 KB Output is correct
39 Correct 19 ms 12672 KB Output is correct
40 Correct 19 ms 12544 KB Output is correct
41 Correct 18 ms 12544 KB Output is correct
42 Correct 19 ms 12416 KB Output is correct
43 Correct 18 ms 12416 KB Output is correct
44 Correct 24 ms 12456 KB Output is correct
45 Correct 17 ms 12416 KB Output is correct
46 Correct 16 ms 12416 KB Output is correct
47 Correct 17 ms 12416 KB Output is correct
48 Correct 15 ms 12544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 12160 KB Output is correct
2 Correct 13 ms 12160 KB Output is correct
3 Correct 13 ms 12160 KB Output is correct
4 Correct 13 ms 12160 KB Output is correct
5 Correct 13 ms 12160 KB Output is correct
6 Correct 13 ms 12160 KB Output is correct
7 Correct 13 ms 12192 KB Output is correct
8 Correct 15 ms 12160 KB Output is correct
9 Correct 15 ms 12160 KB Output is correct
10 Correct 13 ms 12160 KB Output is correct
11 Correct 13 ms 12160 KB Output is correct
12 Correct 13 ms 12160 KB Output is correct
13 Correct 16 ms 12160 KB Output is correct
14 Correct 13 ms 12160 KB Output is correct
15 Correct 13 ms 12160 KB Output is correct
16 Correct 12 ms 12160 KB Output is correct
17 Correct 13 ms 12152 KB Output is correct
18 Correct 15 ms 12160 KB Output is correct
19 Correct 16 ms 12160 KB Output is correct
20 Correct 13 ms 12160 KB Output is correct
21 Correct 14 ms 12160 KB Output is correct
22 Correct 13 ms 12160 KB Output is correct
23 Correct 17 ms 12160 KB Output is correct
24 Correct 14 ms 12160 KB Output is correct
25 Correct 18 ms 12800 KB Output is correct
26 Correct 20 ms 12672 KB Output is correct
27 Correct 17 ms 12828 KB Output is correct
28 Correct 20 ms 12800 KB Output is correct
29 Correct 19 ms 12800 KB Output is correct
30 Correct 17 ms 12800 KB Output is correct
31 Correct 18 ms 12800 KB Output is correct
32 Correct 18 ms 12800 KB Output is correct
33 Correct 17 ms 12928 KB Output is correct
34 Correct 17 ms 12928 KB Output is correct
35 Correct 21 ms 12928 KB Output is correct
36 Correct 19 ms 12928 KB Output is correct
37 Correct 22 ms 13056 KB Output is correct
38 Correct 20 ms 13056 KB Output is correct
39 Correct 19 ms 12672 KB Output is correct
40 Correct 19 ms 12544 KB Output is correct
41 Correct 18 ms 12544 KB Output is correct
42 Correct 19 ms 12416 KB Output is correct
43 Correct 18 ms 12416 KB Output is correct
44 Correct 24 ms 12456 KB Output is correct
45 Correct 17 ms 12416 KB Output is correct
46 Correct 16 ms 12416 KB Output is correct
47 Correct 17 ms 12416 KB Output is correct
48 Correct 15 ms 12544 KB Output is correct
49 Correct 1234 ms 72400 KB Output is correct
50 Correct 1285 ms 72560 KB Output is correct
51 Correct 1248 ms 72432 KB Output is correct
52 Correct 1317 ms 72396 KB Output is correct
53 Correct 1004 ms 73920 KB Output is correct
54 Correct 976 ms 73356 KB Output is correct
55 Correct 1022 ms 73580 KB Output is correct
56 Correct 981 ms 73472 KB Output is correct
57 Correct 1368 ms 86908 KB Output is correct
58 Correct 1320 ms 86816 KB Output is correct
59 Correct 1384 ms 86764 KB Output is correct
60 Correct 1426 ms 86764 KB Output is correct
61 Correct 1778 ms 100568 KB Output is correct
62 Correct 1892 ms 100428 KB Output is correct
63 Execution timed out 2058 ms 66648 KB Time limit exceeded
64 Halted 0 ms 0 KB -