Submission #107839

# Submission time Handle Problem Language Result Execution time Memory
107839 2019-04-26T02:51:49 Z qkxwsm Hard route (IZhO17_road) C++14
52 / 100
2000 ms 107600 KB
//clever
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();

struct custom_hash
{
	template<class T>
	unsigned long long operator()(T v) const
	{
		unsigned long long x = v;
		x += FIXED_RANDOM;
		// x += 11400714819323198485ull;
		// x = (x ^ (x >> 30)) * 13787848793156543929ull;
		x = (x ^ (x >> 27)) * 10723151780598845931ull;
		return x ^ (x >> 31);
	}
};

template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;

template<class T>
T randomize(T mod)
{
	return (uniform_int_distribution<T>(0, mod - 1))(rng);
}
template<class T>
void readi(T &x)
{
	x = 0;
	bool negative = false;
	char c = ' ';
	while (c < '-')
	{
		c = getchar();
	}
	if (c == '-')
	{
		negative = true;
		c = getchar();
	}
	while (c >= '0')
	{
		x = x * 10 + (c - '0');
		c = getchar();
	}
	if (negative)
	{
		x = -x;
	}
}
template<class T>
void printi(T output)
{
	if (output == 0)
	{
		putchar('0');
		return;
	}
	if (output < 0)
	{
		putchar('-');
		output = -output;
	}
	int buf[20], n = 0;
	while(output)
	{
		buf[n] = ((output % 10));
		output /= 10;
		n++;
	}
	for (n--; n >= 0; n--)
	{
		putchar(buf[n] + '0');
	}
	return;
}
template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
	return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
	if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
	return (b ? gcd(b, a % b) : a);
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define PB push_back
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << (x) << endl
#define SZ(x) ((int) ((x).size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) (x).begin(), (x).end()

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-9;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 500013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;

int N;
vi edge[MAXN];
pll ans = {0, 0};
int depth[MAXN];
pll dp[MAXN];
int dist[2][MAXN];
int parent[MAXN];
int S, T;
bool flag;
bitset<MAXN> diam;

void comb(pll &p, pll q)
{
	if (q.se == 0) return;
	if (q.fi > p.fi) p = q;
	else if (q.fi == p.fi) p.se += q.se;
}
void gendist(int u)
{
	FOR(i, 0, N) depth[i] = INF;
	depth[u] = 0;
	vi nodes;
	nodes.PB(u);
	while(!nodes.empty())
	{
		int v = nodes.back();
		nodes.pop_back();
		for (int w : edge[v])
		{
			if (depth[w] != INF) continue;
			depth[w] = depth[v] + 1;
			nodes.PB(w);
		}
	}
	return;
}
void dfs(int u, int p)
{
	if (SZ(edge[u]) == 1)
	{
		dp[u] = MP(dist[flag][u], 1);
		return;
	}
	dp[u] = MP(0, 0);
	for (int v : edge[u])
	{
		if (v == p) continue;
		dfs(v, u);
		comb(dp[u], dp[v]);
	}
	vi biggest;
	for (int v : edge[u])
	{
		if (v == p) continue;
		if (dp[v].fi == dp[u].fi)
		{
			biggest.PB(dp[v].se);
		}
	}
	pll opt = {0, 0};
	if (SZ(biggest) > 1)
	{
		opt.fi = dist[flag][u] * (dp[u].fi + dp[u].fi - 2 * dist[flag][u]);
		ll tot = 0;
		for (int x : biggest) tot += x;
		for (int x : biggest) opt.se += (tot - x) * x;
		opt.se /= 2;
	}
	else if (!biggest.empty())
	{
		//find the second biggest!
		for (int v : edge[u])
		{
			if (v == p) continue;
			if (dp[v].fi != dp[u].fi)
			{
				comb(opt, dp[v]);
			}
		}
		opt.se *= biggest[0];
		opt.fi = dist[flag][u] * (opt.fi + dp[u].fi - 2 * dist[flag][u]);
	}
	comb(ans, opt);
	// cerr << "vert " << u << ' ' << opt.fi << ' ' << opt.se << endl;
}
void dfs2(int u)
{
	for (int v : edge[u])
	{
		if (v == parent[u]) continue;
		parent[v] = u;
		dfs2(v);
	}
}
void dfs3(int u)
{
	if (SZ(edge[u]) == 1)
	{
		dp[u] = MP(dist[flag][u], 1);
		return;
	}
	dp[u] = MP(0, 0);
	for (int v : edge[u])
	{
		if (diam[v] || v == parent[u]) continue;
		dfs3(v);
		comb(dp[u], dp[v]);
	}
	if (dist[0][u] == dist[1][u])
	{
		vi biggest;
		for (int v : edge[u])
		{
			if (diam[v] || v == parent[u]) continue;
			if (dp[v].fi == dp[u].fi)
			{
				biggest.PB(dp[v].se);
			}
		}
		pll opt = {0, 0};
		if (SZ(biggest) > 1)
		{
			opt.fi = dist[flag][u] * (dp[u].fi + dp[u].fi - 2 * dist[flag][u]);
			ll tot = 0;
			for (int x : biggest) tot += x;
			for (int x : biggest) opt.se += (tot - x) * x;
			opt.se /= 2;
		}
		else if (!biggest.empty())
		{
			//find the second biggest!
			for (int v : edge[u])
			{
				if (diam[v] || v == parent[u]) continue;
				if (dp[v].fi != dp[u].fi)
				{
					comb(opt, dp[v]);
				}
			}
			opt.se *= biggest[0];
			opt.fi = dist[flag][u] * (opt.fi + dp[u].fi - 2 * dist[flag][u]);
		}
		if (opt.fi == ans.fi)
		{
			ans.se -= opt.se;
		}
	}
}
void mark(int u, int p)
{
	for (int v : edge[u])
	{
		if (diam[v] || v == p) continue;
		depth[v] = depth[u] + 1;
		mark(v, u);
	}
}

int32_t main()
{
	ios_base::sync_with_stdio(0); cin.tie(0);
	// cout << fixed << setprecision(10);
	// cerr << fixed << setprecision(10);
	// if (fopen("file.in", "r"))
	// {
	// 	freopen ("file.in", "r", stdin);
	// 	freopen ("file.out", "w", stdout);
	// }
	cin >> N;
	FOR(i, 0, N - 1)
	{
		int u, v;
		cin >> u >> v;
		u--; v--;
		edge[u].PB(v); edge[v].PB(u);
	}
	gendist(0);
	FOR(i, 0, N)
	{
		if (depth[i] > depth[S])
		{
			S = i;
		}
	}
	gendist(S);
	FOR(i, 0, N)
	{
		if (depth[i] > depth[T])
		{
			T = i;
		}
		dist[0][i] = depth[i];
	}
	gendist(T);
	FOR(i, 0, N)
	{
		dist[1][i] = depth[i];
	}
	// cerr << S << ' ' << T << endl;
	flag = false;
	for (int v : edge[S])
	{
		dfs(v, S);
	}
	flag = true;
	for (int v : edge[T])
	{
		dfs(v, T);
	}
	FOR(i, 0, N) parent[i] = N;
	dfs2(S);
	vi lol;
	int tmp = T;
	while(tmp != S)
	{
		diam[tmp] = true;
		lol.PB(tmp);
		tmp = parent[tmp];
	}
	diam[tmp] = true;
	lol.PB(tmp);
	// cerr << "HI\n";
	//try the diameter itself!
	FOR(i, 0, N) depth[i] = 0;
	FOR(i, 0, N)
	{
		if (!diam[i]) continue;
		for (int v : edge[i])
		{
			if (diam[v]) continue;
			depth[v] = 1;
			mark(v, i);
		}
	}
	tmp = 0;
	FOR(i, 0, N) ckmax(tmp, depth[i]);
	comb(ans, {dist[0][T] * tmp, 1});
	if (SZ(lol) % 2)
	{
		int mid = lol[SZ(lol) / 2];
		//paths that are optimal but that intersect in a mid need to be subtracted!
		diam[mid] = false;
		FOR(i, 0, N) parent[i] = N;
		dfs2(mid);
		dfs3(mid);
	}
	//oops the guys along the midpoint might cause an overcount
	//some path that intersect along the midpoint
	//find the things that are counted twice!
	cout << ans.fi << ' ' << ans.se << '\n';
	//now solve it for S!
	// cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
	return 0;
}
/* READ READ READ
* int overflow, maxn too small, special cases (n=1?, two distinct?), cin.tie() interactive
* reread the problem, try small cases
* note down possible sources of error as you go
* do smth instead of nothing
*/
# Verdict Execution time Memory Grader output
1 Correct 15 ms 12160 KB Output is correct
2 Correct 16 ms 12160 KB Output is correct
3 Correct 14 ms 12160 KB Output is correct
4 Correct 15 ms 12160 KB Output is correct
5 Correct 17 ms 12192 KB Output is correct
6 Correct 15 ms 12160 KB Output is correct
7 Correct 15 ms 12160 KB Output is correct
8 Correct 13 ms 12160 KB Output is correct
9 Correct 14 ms 12160 KB Output is correct
10 Correct 15 ms 12160 KB Output is correct
11 Correct 14 ms 12160 KB Output is correct
12 Correct 16 ms 12160 KB Output is correct
13 Correct 15 ms 12160 KB Output is correct
14 Correct 15 ms 12160 KB Output is correct
15 Correct 15 ms 12160 KB Output is correct
16 Correct 14 ms 12160 KB Output is correct
17 Correct 15 ms 12160 KB Output is correct
18 Correct 14 ms 12288 KB Output is correct
19 Correct 16 ms 12288 KB Output is correct
20 Correct 16 ms 12160 KB Output is correct
21 Correct 15 ms 12160 KB Output is correct
22 Correct 15 ms 12160 KB Output is correct
23 Correct 16 ms 12288 KB Output is correct
24 Correct 16 ms 12160 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 12160 KB Output is correct
2 Correct 16 ms 12160 KB Output is correct
3 Correct 14 ms 12160 KB Output is correct
4 Correct 15 ms 12160 KB Output is correct
5 Correct 17 ms 12192 KB Output is correct
6 Correct 15 ms 12160 KB Output is correct
7 Correct 15 ms 12160 KB Output is correct
8 Correct 13 ms 12160 KB Output is correct
9 Correct 14 ms 12160 KB Output is correct
10 Correct 15 ms 12160 KB Output is correct
11 Correct 14 ms 12160 KB Output is correct
12 Correct 16 ms 12160 KB Output is correct
13 Correct 15 ms 12160 KB Output is correct
14 Correct 15 ms 12160 KB Output is correct
15 Correct 15 ms 12160 KB Output is correct
16 Correct 14 ms 12160 KB Output is correct
17 Correct 15 ms 12160 KB Output is correct
18 Correct 14 ms 12288 KB Output is correct
19 Correct 16 ms 12288 KB Output is correct
20 Correct 16 ms 12160 KB Output is correct
21 Correct 15 ms 12160 KB Output is correct
22 Correct 15 ms 12160 KB Output is correct
23 Correct 16 ms 12288 KB Output is correct
24 Correct 16 ms 12160 KB Output is correct
25 Correct 18 ms 12928 KB Output is correct
26 Correct 23 ms 12836 KB Output is correct
27 Correct 20 ms 12800 KB Output is correct
28 Correct 18 ms 12800 KB Output is correct
29 Correct 17 ms 12800 KB Output is correct
30 Correct 19 ms 12800 KB Output is correct
31 Correct 19 ms 12800 KB Output is correct
32 Correct 17 ms 12800 KB Output is correct
33 Correct 19 ms 12900 KB Output is correct
34 Correct 20 ms 12928 KB Output is correct
35 Correct 22 ms 12980 KB Output is correct
36 Correct 22 ms 12980 KB Output is correct
37 Correct 21 ms 13056 KB Output is correct
38 Correct 20 ms 13056 KB Output is correct
39 Correct 23 ms 12800 KB Output is correct
40 Correct 20 ms 12684 KB Output is correct
41 Correct 20 ms 12544 KB Output is correct
42 Correct 19 ms 12544 KB Output is correct
43 Correct 19 ms 12544 KB Output is correct
44 Correct 19 ms 12416 KB Output is correct
45 Correct 18 ms 12536 KB Output is correct
46 Correct 17 ms 12416 KB Output is correct
47 Correct 18 ms 12452 KB Output is correct
48 Correct 18 ms 12544 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 12160 KB Output is correct
2 Correct 16 ms 12160 KB Output is correct
3 Correct 14 ms 12160 KB Output is correct
4 Correct 15 ms 12160 KB Output is correct
5 Correct 17 ms 12192 KB Output is correct
6 Correct 15 ms 12160 KB Output is correct
7 Correct 15 ms 12160 KB Output is correct
8 Correct 13 ms 12160 KB Output is correct
9 Correct 14 ms 12160 KB Output is correct
10 Correct 15 ms 12160 KB Output is correct
11 Correct 14 ms 12160 KB Output is correct
12 Correct 16 ms 12160 KB Output is correct
13 Correct 15 ms 12160 KB Output is correct
14 Correct 15 ms 12160 KB Output is correct
15 Correct 15 ms 12160 KB Output is correct
16 Correct 14 ms 12160 KB Output is correct
17 Correct 15 ms 12160 KB Output is correct
18 Correct 14 ms 12288 KB Output is correct
19 Correct 16 ms 12288 KB Output is correct
20 Correct 16 ms 12160 KB Output is correct
21 Correct 15 ms 12160 KB Output is correct
22 Correct 15 ms 12160 KB Output is correct
23 Correct 16 ms 12288 KB Output is correct
24 Correct 16 ms 12160 KB Output is correct
25 Correct 18 ms 12928 KB Output is correct
26 Correct 23 ms 12836 KB Output is correct
27 Correct 20 ms 12800 KB Output is correct
28 Correct 18 ms 12800 KB Output is correct
29 Correct 17 ms 12800 KB Output is correct
30 Correct 19 ms 12800 KB Output is correct
31 Correct 19 ms 12800 KB Output is correct
32 Correct 17 ms 12800 KB Output is correct
33 Correct 19 ms 12900 KB Output is correct
34 Correct 20 ms 12928 KB Output is correct
35 Correct 22 ms 12980 KB Output is correct
36 Correct 22 ms 12980 KB Output is correct
37 Correct 21 ms 13056 KB Output is correct
38 Correct 20 ms 13056 KB Output is correct
39 Correct 23 ms 12800 KB Output is correct
40 Correct 20 ms 12684 KB Output is correct
41 Correct 20 ms 12544 KB Output is correct
42 Correct 19 ms 12544 KB Output is correct
43 Correct 19 ms 12544 KB Output is correct
44 Correct 19 ms 12416 KB Output is correct
45 Correct 18 ms 12536 KB Output is correct
46 Correct 17 ms 12416 KB Output is correct
47 Correct 18 ms 12452 KB Output is correct
48 Correct 18 ms 12544 KB Output is correct
49 Correct 1349 ms 79512 KB Output is correct
50 Correct 1443 ms 79476 KB Output is correct
51 Correct 1388 ms 79564 KB Output is correct
52 Correct 1438 ms 79600 KB Output is correct
53 Correct 1063 ms 80076 KB Output is correct
54 Correct 1095 ms 80152 KB Output is correct
55 Correct 1024 ms 80264 KB Output is correct
56 Correct 1141 ms 80128 KB Output is correct
57 Correct 1612 ms 94060 KB Output is correct
58 Correct 1529 ms 93880 KB Output is correct
59 Correct 1528 ms 94032 KB Output is correct
60 Correct 1551 ms 93964 KB Output is correct
61 Execution timed out 2032 ms 107600 KB Time limit exceeded
62 Halted 0 ms 0 KB -