답안 #1077404

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1077404 2024-08-27T06:51:20 Z bleahbleah Tricks of the Trade (CEOI23_trade) C++17
10 / 100
8000 ms 19024 KB
#include <bits/stdc++.h>
#define all(x) (x).begin(),(x).end()
using namespace std;
 
using ll = long long;
using ld = long double;
 
#define int ll
#define sz(x) ((int)(x).size())
 
using pii = pair<int,int>;
using tii = tuple<int,int,int>;
 
const int nmax = 25e4 + 5;
 
int K;
 
const ll inf = 1e18;
 
struct KthHeap {
   multiset<int> outside, inside;
   void repair() {
      while(sz(inside) > K) {
         int x = *inside.begin();
         inside.erase(inside.find(x));
         outside.insert(x);
         sum -= x;
      }
      while(sz(inside) < K && sz(outside)) {
         int x = *outside.rbegin();
         outside.erase(outside.find(x));
         inside.insert(x);
         sum += x;
      }
      while(sz(inside) && sz(outside) && *inside.begin() < *outside.rbegin()) {
         int x = *outside.rbegin(), y = *inside.begin();
         outside.erase(outside.find(x));
         inside.erase(inside.find(y));
         outside.emplace(y);
         inside.emplace(x);
         sum += x - y;
      }
      return;
   }
   void erase(int x) {
      if(outside.find(x) != outside.end())
         outside.erase(outside.find(x));
      else if(inside.find(x) != inside.end())
         inside.erase(inside.find(x)), sum -= x;
      else assert(false);
      repair();
   }
   void insert(int x) {
      outside.emplace(x);
      repair();
   }
   ll query() {
      repair();
      if(sz(inside) < K) return -inf;
      return sum;
   }
   
   private:
      ll sum = 0;
};
 
ll dp[nmax];
 
ll spart[nmax];
ll v[nmax];
 
ll S(int l, int r) { return spart[r] - spart[l - 1]; }
 
namespace DivideM {
   int bestcut[nmax];
   KthHeap hint;
   
   void divide(int l, int r) {
      if(l + 1 == r) return;
      int optl = bestcut[l], optr = bestcut[r];
      
      int mid = l + r >> 1;
      if(r <= optl) {
         for(int i = mid; i < r; i++) hint.insert(v[i]);
         ll best = hint.query() - S(mid, optl);
         int atr = optl;
         for(int i = optl + 1; i <= optr; i++) {
            hint.insert(v[i]);
            if(hint.query() - S(mid, i) >= best) tie(best, atr) = make_pair(hint.query() - S(mid, i), i);
         }
         bestcut[mid] = atr, dp[mid] = best;
         if(atr - mid + 1 == K) {
            int SA = S(mid, atr), SB = 0;
            for(int i = mid; i <= atr; i++) SB += v[i];
         }
         
         for(int i = optl + 1; i <= optr; i++) hint.erase(v[i]);
         divide(l, mid);
         for(int i = mid; i < r; i++) hint.erase(v[i]);
         for(int i = optl + 1; i <= atr; i++) hint.insert(v[i]);
         divide(mid, r);
         for(int i = optl + 1; i <= atr; i++) hint.erase(v[i]);
      }
      else {
         int border = max(mid - 1, optl);
         for(int i = mid; i <= border; i++) hint.insert(v[i]);
         ll best = hint.query() - S(mid, border), atr = border;
         for(int i = border + 1; i <= optr; i++) {
            hint.insert(v[i]);
            if(hint.query() - S(mid, i) >= best) tie(best, atr) = make_pair(hint.query() - S(mid, i), i);
         }
         
         bestcut[mid] = atr, dp[mid] = best;
         
         for(int i = optr; i > border; i--) hint.erase(v[i]);
         divide(l, mid);
         for(int i = mid; i <= border; i++) hint.erase(v[i]);
         for(int i = r; i <= atr; i++) hint.insert(v[i]);
         divide(mid, r);
         for(int i = r; i <= atr; i++) hint.erase(v[i]);
      }
   }
   
}
 
 
namespace Dividem {
   int bestcut[nmax];
   KthHeap hint;
   
   void divide(int l, int r) {
      if(l + 1 == r) return;
      int optl = bestcut[l], optr = bestcut[r];
      
      int mid = l + r >> 1;
      if(r <= optl) {
         for(int i = mid; i < r; i++) hint.insert(v[i]);
         ll best = hint.query() - S(mid, optl);
         int atr = optl;
         for(int i = optl + 1; i <= optr; i++) {
            hint.insert(v[i]);
            if(hint.query() - S(mid, i) > best) tie(best, atr) = make_pair(hint.query() - S(mid, i), i);
         }
         bestcut[mid] = atr, dp[mid] = best;
         if(atr - mid + 1 == K) {
            int SA = S(mid, atr), SB = 0;
            for(int i = mid; i <= atr; i++) SB += v[i];
         }
         
         for(int i = optl + 1; i <= optr; i++) hint.erase(v[i]);
         divide(l, mid);
         for(int i = mid; i < r; i++) hint.erase(v[i]);
         for(int i = optl + 1; i <= atr; i++) hint.insert(v[i]);
         divide(mid, r);
         for(int i = optl + 1; i <= atr; i++) hint.erase(v[i]);
      }
      else {
         int border = max(mid - 1, optl);
         for(int i = mid; i <= border; i++) hint.insert(v[i]);
         ll best = hint.query() - S(mid, border), atr = border;
         for(int i = border + 1; i <= optr; i++) {
            hint.insert(v[i]);
            if(hint.query() - S(mid, i) > best) tie(best, atr) = make_pair(hint.query() - S(mid, i), i);
         }
         
         bestcut[mid] = atr, dp[mid] = best;
         
         for(int i = optr; i > border; i--) hint.erase(v[i]);
         divide(l, mid);
         for(int i = mid; i <= border; i++) hint.erase(v[i]);
         for(int i = r; i <= atr; i++) hint.insert(v[i]);
         divide(mid, r);
         for(int i = r; i <= atr; i++) hint.erase(v[i]);
      }
   }
   
}
 
 
signed main() {
   cin.tie(0) -> sync_with_stdio(0);
   int n;
   cin >> n >> K;
   for(int i = 1; i <= n; i++) {
      cin >> spart[i];
      spart[i] += spart[i - 1];
   }
   for(int i = 1; i <= n; i++)
      cin >> v[i];
      
   DivideM::bestcut[0] = Dividem::bestcut[0] = 0;
   DivideM::bestcut[n - K + 2] = Dividem::bestcut[n - K + 2] = n;
   DivideM::divide(0, n - K + 2);
   Dividem::divide(0, n - K + 2);
   ll mx = -inf;
   
   vector<int> possible(n + 1);
   
   
   for(int i = 1; i <= n - K + 1; i++) 
      mx = max(mx, dp[i]);
   cout << mx << '\n';
   
   auto cmp = [&](int a, int b) { return (v[a] < v[b] || (v[a] == v[b] && a < b)); };
   set<int, decltype(cmp)> inside(cmp), outside(cmp);
   
   int criteriaIL = n + 1, criteriaIR = -1, criteriaV = inf;
   
   for(int i = 1; i <= n; i++) {
      if(dp[i] != mx) continue;
      set<int, decltype(cmp)> kth(cmp);
      for(int j = i; j < Dividem::bestcut[i]; j++) {
         kth.emplace(j);
      }
      auto repair = [&]() {
         while(sz(kth) > K && v[*kth.begin()] < v[*next(kth.begin())]) {
            kth.erase(kth.begin());
         }
         return;
      };
      for(int j = DivideM::bestcut[i]; j <= DivideM::bestcut[i]; j++) {
         kth.emplace(j);
         repair();
         for(auto x : kth) possible[x] = 1;
      }
      
   }
   
   
   for(int i = 1; i <= n; i++) cout << possible[i];
   cout << '\n';
 
}
 
 
/**
      Töte es durch genaue Untersuchung\Töte es kann es nur noch schlimmer machen\Es lässt es irgendwie atmen
--
*/ 

Compilation message

trade.cpp: In function 'void DivideM::divide(ll, ll)':
trade.cpp:82:19: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   82 |       int mid = l + r >> 1;
      |                 ~~^~~
trade.cpp:93:17: warning: unused variable 'SA' [-Wunused-variable]
   93 |             int SA = S(mid, atr), SB = 0;
      |                 ^~
trade.cpp: In function 'void Dividem::divide(ll, ll)':
trade.cpp:135:19: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
  135 |       int mid = l + r >> 1;
      |                 ~~^~~
trade.cpp:146:17: warning: unused variable 'SA' [-Wunused-variable]
  146 |             int SA = S(mid, atr), SB = 0;
      |                 ^~
trade.cpp: In function 'int main()':
trade.cpp:207:8: warning: unused variable 'criteriaIL' [-Wunused-variable]
  207 |    int criteriaIL = n + 1, criteriaIR = -1, criteriaV = inf;
      |        ^~~~~~~~~~
trade.cpp:207:28: warning: unused variable 'criteriaIR' [-Wunused-variable]
  207 |    int criteriaIL = n + 1, criteriaIR = -1, criteriaV = inf;
      |                            ^~~~~~~~~~
trade.cpp:207:45: warning: unused variable 'criteriaV' [-Wunused-variable]
  207 |    int criteriaIL = n + 1, criteriaIR = -1, criteriaV = inf;
      |                                             ^~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Partially correct 0 ms 348 KB Partially correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Partially correct 0 ms 348 KB Partially correct
3 Partially correct 1 ms 348 KB Partially correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Partially correct 1 ms 348 KB Partially correct
7 Partially correct 2 ms 348 KB Partially correct
8 Partially correct 1 ms 348 KB Partially correct
9 Partially correct 3 ms 344 KB Partially correct
10 Correct 1 ms 348 KB Output is correct
11 Partially correct 1 ms 348 KB Partially correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Partially correct 0 ms 348 KB Partially correct
3 Partially correct 1 ms 348 KB Partially correct
4 Correct 1 ms 348 KB Output is correct
5 Correct 1 ms 348 KB Output is correct
6 Partially correct 1 ms 348 KB Partially correct
7 Partially correct 2 ms 348 KB Partially correct
8 Partially correct 1 ms 348 KB Partially correct
9 Partially correct 3 ms 344 KB Partially correct
10 Correct 1 ms 348 KB Output is correct
11 Partially correct 1 ms 348 KB Partially correct
12 Correct 0 ms 344 KB Output is correct
13 Partially correct 0 ms 344 KB Partially correct
14 Partially correct 1 ms 348 KB Partially correct
15 Correct 1 ms 348 KB Output is correct
16 Correct 1 ms 348 KB Output is correct
17 Partially correct 1 ms 500 KB Partially correct
18 Partially correct 3 ms 348 KB Partially correct
19 Partially correct 1 ms 348 KB Partially correct
20 Partially correct 2 ms 348 KB Partially correct
21 Correct 2 ms 348 KB Output is correct
22 Partially correct 1 ms 348 KB Partially correct
23 Correct 7 ms 856 KB Output is correct
24 Partially correct 60 ms 860 KB Partially correct
25 Partially correct 275 ms 864 KB Partially correct
26 Partially correct 195 ms 900 KB Partially correct
27 Partially correct 530 ms 856 KB Partially correct
28 Correct 14 ms 856 KB Output is correct
29 Correct 92 ms 856 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 1 ms 344 KB Partially correct
2 Correct 666 ms 16152 KB Output is correct
3 Correct 1065 ms 16212 KB Output is correct
4 Correct 3036 ms 19024 KB Output is correct
5 Execution timed out 8052 ms 16032 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Partially correct 1 ms 344 KB Partially correct
2 Correct 666 ms 16152 KB Output is correct
3 Correct 1065 ms 16212 KB Output is correct
4 Correct 3036 ms 19024 KB Output is correct
5 Execution timed out 8052 ms 16032 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 348 KB Output is correct
2 Partially correct 0 ms 348 KB Partially correct
3 Correct 0 ms 348 KB Output is correct
4 Partially correct 0 ms 348 KB Partially correct
5 Partially correct 1 ms 348 KB Partially correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Partially correct 1 ms 348 KB Partially correct
9 Partially correct 2 ms 348 KB Partially correct
10 Partially correct 1 ms 348 KB Partially correct
11 Partially correct 3 ms 344 KB Partially correct
12 Correct 1 ms 348 KB Output is correct
13 Partially correct 1 ms 348 KB Partially correct
14 Correct 0 ms 344 KB Output is correct
15 Partially correct 0 ms 344 KB Partially correct
16 Partially correct 1 ms 348 KB Partially correct
17 Correct 1 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Partially correct 1 ms 500 KB Partially correct
20 Partially correct 3 ms 348 KB Partially correct
21 Partially correct 1 ms 348 KB Partially correct
22 Partially correct 2 ms 348 KB Partially correct
23 Correct 2 ms 348 KB Output is correct
24 Partially correct 1 ms 348 KB Partially correct
25 Correct 7 ms 856 KB Output is correct
26 Partially correct 60 ms 860 KB Partially correct
27 Partially correct 275 ms 864 KB Partially correct
28 Partially correct 195 ms 900 KB Partially correct
29 Partially correct 530 ms 856 KB Partially correct
30 Correct 14 ms 856 KB Output is correct
31 Correct 92 ms 856 KB Output is correct
32 Partially correct 1 ms 344 KB Partially correct
33 Correct 666 ms 16152 KB Output is correct
34 Correct 1065 ms 16212 KB Output is correct
35 Correct 3036 ms 19024 KB Output is correct
36 Execution timed out 8052 ms 16032 KB Time limit exceeded
37 Halted 0 ms 0 KB -