Submission #1074428

# Submission time Handle Problem Language Result Execution time Memory
1074428 2024-08-25T10:28:49 Z Zanite Growing Vegetables is Fun 5 (JOI24_vegetables5) C++17
30 / 100
5000 ms 79876 KB
// こんな僕等がお互い蹴落として
// まで掴んだ物は何ですか
// 僕は 僕を愛してあげたい
// 
// こんなことなら生まれてこなけりゃって
// 全部嫌になってくけれど
// 絶えず 脈打つこれは何だろう
// 
// 何だろう...

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

// Pragmas
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

// Namespaces
using namespace std;
using namespace __gnu_pbds;

// Data types
using si  = short int;
using ll  = long long;
using ull = unsigned long long;
using lll = __int128;
using ld  = long double;

// Pairs
using pii  = pair<int, int>;
using psi  = pair<si, si>;
using pll  = pair<ll, ll>;
using plll = pair<lll, lll>;
using pld  = pair<ld, ld>;
#define fi first
#define se second

// PBDS
template<typename Z>
using ordered_set = tree<Z, null_type, less<Z>, rb_tree_tag, tree_order_statistics_node_update>;

// Various outputs and debug
template<typename Z, typename = void> struct is_iterable : false_type {};
template<typename Z> struct is_iterable<Z, void_t<decltype(begin(declval<Z>())),decltype(end(declval<Z>()))>> : true_type {};
template<typename Z> typename enable_if<is_iterable<Z>::value&&!is_same<Z, string>::value,ostream&>::type operator<<(ostream &os, const Z &v);

template<typename Y, typename Z> ostream& operator<<(ostream &os, const pair<Y, Z> &p) {
    return os << "(" << p.fi << ", " << p.se << ")";
}
template<class TupType, size_t... I> void printTuple(ostream& os, const TupType& _tup, index_sequence<I...>) {
    os << "(";
    (..., (os << (I == 0? "" : ", ") << get<I>(_tup)));
    os << ")";
}
template<class... Z> ostream& operator<<(ostream& os, const tuple<Z...>& _tup) {
    printTuple(os, _tup, make_index_sequence<sizeof...(Z)>());
    return os;
}
template<typename Z> typename enable_if<is_iterable<Z>::value&&!is_same<Z, string>::value,ostream&>::type operator<<(ostream &os, const Z &v) {
    os << "["; 
    for (auto it = v.begin(); it != v.end();) { os << *it; if (++it != v.end()) os << ", "; }
    return os << "]";
}

#define debug(...)    logger(cout, #__VA_ARGS__, __VA_ARGS__)
#define debugV(v, x)  vlogger(cout, #v, x, v[x]);
#define rrebug(...)   logger(cerr, #__VA_ARGS__, __VA_ARGS__)
#define rrebugV(v, x) vlogger(cerr, #v, x, v[x]);
template <typename... Args>
void logger(ostream& os, string vars, Args &&...values) {
    os << vars << " = "; string delim = "";
    (..., (os << delim << values, delim = ", "));
    os << "\n";
}
template<class Y, class Z>
void vlogger(ostream& os, string var, Y idx, Z val) {
    os << var << "[" << idx << "] = " << val << "\n";
}

// Various macros
#define All(x)            x.begin(), x.end()
#define Sort(x)           sort(All(x))
#define Reverse(x)        reverse(All(x))
#define Uniqueify(x)      Sort(x); x.erase(unique(All(x)), x.end())
#define RandomSeed        chrono::steady_clock::now().time_since_epoch().count()
#define MultipleTestcases int _tc; cin >> _tc; for (int _cur_tc = 1; _cur_tc <= _tc; _cur_tc++)

// Chmin & chmax
template<typename Z> bool chmin(Z &a, Z b) { return (b < a) ? a = b, true : false; }
template<typename Z> bool chmax(Z &a, Z b) { return (b > a) ? a = b, true : false; }
 
// Modular arithmetic
template<int MOD>
class ModInt {
  public:
    int v;
    ModInt() : v(0) {}
    ModInt(long long _v) {
        v = int((-MOD < _v && _v < MOD) ? (_v) : (_v % MOD));
        if (v < 0) v += MOD;
    }
 
    friend bool operator==(const ModInt &a, const ModInt &b) { return a.v == b.v; }
    friend bool operator!=(const ModInt &a, const ModInt &b) { return a.v != b.v; }
    friend bool operator< (const ModInt &a, const ModInt &b) { return a.v <  b.v; }
    friend bool operator<=(const ModInt &a, const ModInt &b) { return a.v <= b.v; }
    friend bool operator> (const ModInt &a, const ModInt &b) { return a.v >  b.v; }
    friend bool operator>=(const ModInt &a, const ModInt &b) { return a.v >= b.v; }
 
    ModInt &operator+=(const ModInt &a) { if ((v += a.v) >= MOD) v -= MOD; return *this; }
    ModInt &operator-=(const ModInt &a) { if ((v -= a.v) < 0) v += MOD; return *this; }
    ModInt &operator*=(const ModInt &a) { v = 1ll * v * a.v % MOD; return *this; }
    ModInt &operator/=(const ModInt &a) { return (*this) *= inverse(a); }
 
    friend ModInt pow(ModInt a, long long x) {
        ModInt res = 1;
        for (; x; x /= 2, a *= a) if (x & 1) res *= a;
        return res;
    }
    friend ModInt inverse(ModInt a) { return pow(a, MOD - 2); }
 
    ModInt operator+ () const { return ModInt( v); }
    ModInt operator- () const { return ModInt(-v); }
    ModInt operator++() const { return *this += 1; }
    ModInt operator--() const { return *this -= 1; }
 
    friend ModInt operator+(ModInt a, const ModInt &b) { return a += b; }
    friend ModInt operator-(ModInt a, const ModInt &b) { return a -= b; }
    friend ModInt operator*(ModInt a, const ModInt &b) { return a *= b; }
    friend ModInt operator/(ModInt a, const ModInt &b) { return a /= b; }
 
    friend istream &operator>>(istream &is, ModInt &v) { return is >> v.v; }
    friend ostream &operator<<(ostream &os, const ModInt &v) { return os << v.v; }
};
const int ModA = 998244353;
const int ModC = 1e9 + 7;
using MintA    = ModInt<ModA>;
using MintC    = ModInt<ModC>;

// Other constants
const ll INF  = 1e18;
const ll iINF = 1e9;
const ld EPS  = 1e-9;
const ld iEPS = 1e-6;

const int maxN  = 300'023;

int N, _2N;
int A[2*maxN], B[maxN], C[maxN];
vector<pii> order;

pii valid_B[2*maxN], valid_R[2*maxN];

namespace FenwickTree {
    int BIT[2*maxN];

    void reset() {
        for (int i = 1; i <= _2N; i++) BIT[i] = 0;
    }

    void update(int idx, int val) {
        for (; idx <= _2N; idx += (idx & -idx)) {
            BIT[idx] += val;
        }
    }

    void update(int l, int r, int val) {
        if (l > r) return;
        update(l, val); update(r+1, -val);
    }

    int query(int idx) {
        if (idx > _2N) idx = _2N;
        int ret = 0;
        for (; idx > 0; idx -= (idx & -idx)) {
            ret += BIT[idx];
        }
        return ret;
    }
};

void work(int idx, set<int> &s, pii *valid, bool do_update) {
    auto it = s.begin();
    while (
        !s.empty() &&
        (it = s.lower_bound(idx - N + 1)) != s.end() &&
        *it <= idx
    ) {
        int t = FenwickTree::query(*it);
        if (t < valid[idx].fi || t > valid[idx].se) {
            s.erase(it);
        } else break;
    }
    while (
        !s.empty() &&
        (it = s.upper_bound(idx)) != s.begin() &&
        *(--it) >= idx - N + 1
    ) {
        int t = FenwickTree::query(*it);
        if (t < valid[idx].fi || t > valid[idx].se) {
            s.erase(it);
        } else break;
    }

    if (idx <= N) {
        if (do_update) FenwickTree::update(idx + N + 1, _2N, 1);
        while (
            !s.empty() &&
            (it = s.lower_bound(idx + N +1)) != s.end() &&
            *it <= idx + _2N
        ) {
            int t = FenwickTree::query(*it);
            if (t < valid[idx].fi || t > valid[idx].se) {
                s.erase(it);
            } else break;
        }
        while (
            !s.empty() &&
            (it = s.upper_bound(idx + _2N)) != s.begin() &&
            *(--it) >= idx + N + 1
        ) {
            int t = FenwickTree::query(*it);
            if (t < valid[idx].fi || t > valid[idx].se) {
                s.erase(it);
            } else break;
        }
    }
}

bool valid(int chk) {
    for (int i = 1; i <= _2N; i++) {
        valid_B[i] = {
            lower_bound(B+1, B+N+1, A[i] - chk) - B,
            upper_bound(B+1, B+N+1, A[i] + chk) - B - 1
        };
        valid_R[i] = {
            lower_bound(C+1, C+N+1, A[i] - chk) - C,
            upper_bound(C+1, C+N+1, A[i] + chk) - C - 1
        };
    }

    set<int> blue, red;
    for (int i = 1; i <= _2N; i++) {
        blue.insert(i); red.insert(i);
    }

    FenwickTree::reset();

    for (auto [val, idx] : order) {
        FenwickTree::update(max(1, idx - N + 1), idx, 1);
        work(idx, blue, valid_B, true);
        work(idx, red, valid_R, false);
    }

    for (auto x : blue) {
        if (red.count(x - N) || red.count(x + N)) return true;
    }
    return false;
}

int main() {
    ios_base::sync_with_stdio(false); cin.tie(NULL);
    
    scanf("%d", &N);
    _2N = 2*N;

    for (int i = 1; i <= _2N; i++) scanf("%d", &A[i]);
    for (int i = 1; i <= N; i++) scanf("%d", &B[i]);
    for (int i = 1; i <= N; i++) scanf("%d", &C[i]);

    for (int i = 1; i <= _2N; i++) order.push_back({A[i], i});
    Sort(order); sort(B+1, B+N+1); sort(C+1, C+N+1);

    int hl = 0, hr = iINF, ans = -1;
    while (hl <= hr) {
        int hm = (hl + hr) / 2;
        if (valid(hm)) {
            ans = hm;
            hr = hm - 1;
        } else {
            hl = hm + 1;
        }
    }

    printf("%d\n", ans);
}

// dibisakan

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:266:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  266 |     scanf("%d", &N);
      |     ~~~~~^~~~~~~~~~
Main.cpp:269:41: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  269 |     for (int i = 1; i <= _2N; i++) scanf("%d", &A[i]);
      |                                    ~~~~~^~~~~~~~~~~~~
Main.cpp:270:39: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  270 |     for (int i = 1; i <= N; i++) scanf("%d", &B[i]);
      |                                  ~~~~~^~~~~~~~~~~~~
Main.cpp:271:39: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  271 |     for (int i = 1; i <= N; i++) scanf("%d", &C[i]);
      |                                  ~~~~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8536 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 8672 KB Output is correct
6 Correct 2 ms 8540 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 1 ms 8540 KB Output is correct
10 Correct 2 ms 8536 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8536 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 8672 KB Output is correct
6 Correct 2 ms 8540 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 1 ms 8540 KB Output is correct
10 Correct 2 ms 8536 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 1 ms 8536 KB Output is correct
14 Correct 1 ms 8540 KB Output is correct
15 Correct 1 ms 8668 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 1 ms 8540 KB Output is correct
18 Correct 1 ms 8540 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 1 ms 8540 KB Output is correct
22 Correct 1 ms 8540 KB Output is correct
23 Correct 1 ms 8540 KB Output is correct
24 Correct 1 ms 8540 KB Output is correct
25 Correct 1 ms 8540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8536 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 8672 KB Output is correct
6 Correct 2 ms 8540 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 1 ms 8540 KB Output is correct
10 Correct 2 ms 8536 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 1 ms 8536 KB Output is correct
14 Correct 1 ms 8540 KB Output is correct
15 Correct 1 ms 8668 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 1 ms 8540 KB Output is correct
18 Correct 1 ms 8540 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 1 ms 8540 KB Output is correct
22 Correct 1 ms 8540 KB Output is correct
23 Correct 1 ms 8540 KB Output is correct
24 Correct 1 ms 8540 KB Output is correct
25 Correct 1 ms 8540 KB Output is correct
26 Correct 66 ms 9152 KB Output is correct
27 Correct 64 ms 9052 KB Output is correct
28 Correct 57 ms 9052 KB Output is correct
29 Correct 2 ms 8540 KB Output is correct
30 Correct 49 ms 9052 KB Output is correct
31 Correct 55 ms 9048 KB Output is correct
32 Correct 25 ms 8796 KB Output is correct
33 Correct 12 ms 8536 KB Output is correct
34 Correct 56 ms 9052 KB Output is correct
35 Correct 58 ms 9052 KB Output is correct
36 Correct 48 ms 9052 KB Output is correct
37 Correct 44 ms 9052 KB Output is correct
38 Correct 47 ms 9052 KB Output is correct
39 Correct 51 ms 9048 KB Output is correct
40 Correct 55 ms 9120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5049 ms 79876 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 8536 KB Output is correct
2 Correct 1 ms 8540 KB Output is correct
3 Correct 1 ms 8540 KB Output is correct
4 Correct 1 ms 8540 KB Output is correct
5 Correct 1 ms 8672 KB Output is correct
6 Correct 2 ms 8540 KB Output is correct
7 Correct 1 ms 8540 KB Output is correct
8 Correct 1 ms 8540 KB Output is correct
9 Correct 1 ms 8540 KB Output is correct
10 Correct 2 ms 8536 KB Output is correct
11 Correct 1 ms 8540 KB Output is correct
12 Correct 1 ms 8540 KB Output is correct
13 Correct 1 ms 8536 KB Output is correct
14 Correct 1 ms 8540 KB Output is correct
15 Correct 1 ms 8668 KB Output is correct
16 Correct 1 ms 8540 KB Output is correct
17 Correct 1 ms 8540 KB Output is correct
18 Correct 1 ms 8540 KB Output is correct
19 Correct 1 ms 8540 KB Output is correct
20 Correct 1 ms 8540 KB Output is correct
21 Correct 1 ms 8540 KB Output is correct
22 Correct 1 ms 8540 KB Output is correct
23 Correct 1 ms 8540 KB Output is correct
24 Correct 1 ms 8540 KB Output is correct
25 Correct 1 ms 8540 KB Output is correct
26 Correct 66 ms 9152 KB Output is correct
27 Correct 64 ms 9052 KB Output is correct
28 Correct 57 ms 9052 KB Output is correct
29 Correct 2 ms 8540 KB Output is correct
30 Correct 49 ms 9052 KB Output is correct
31 Correct 55 ms 9048 KB Output is correct
32 Correct 25 ms 8796 KB Output is correct
33 Correct 12 ms 8536 KB Output is correct
34 Correct 56 ms 9052 KB Output is correct
35 Correct 58 ms 9052 KB Output is correct
36 Correct 48 ms 9052 KB Output is correct
37 Correct 44 ms 9052 KB Output is correct
38 Correct 47 ms 9052 KB Output is correct
39 Correct 51 ms 9048 KB Output is correct
40 Correct 55 ms 9120 KB Output is correct
41 Execution timed out 5049 ms 79876 KB Time limit exceeded
42 Halted 0 ms 0 KB -