Submission #107438

# Submission time Handle Problem Language Result Execution time Memory
107438 2019-04-24T10:17:43 Z szawinis Amusement Park (JOI17_amusement_park) C++17
18 / 100
129 ms 5848 KB
#include "Joi.h"
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+1;

struct Solver_Joi {
    int n, m, mxd, mxdv, color[N], last[N];
    long long X;
    vector<int> g1[N], g2[N];

    bool vis[N];
    int par[N], depth[N];
    void init_dfs(int u) {
        vis[u] = true;
        if(depth[u] > mxd) {
            mxd = depth[u];
            mxdv = u;
        }
        for(int v: g1[u]) {
            if(vis[v]) continue;
            g2[u].push_back(v);
            par[v] = u;
            depth[v] = depth[u] + 1;
            init_dfs(v);
        }
    }

    void colorBig(int u) {
        color[u] = depth[u] % 60;
        for(int v: g2[u]) {
            colorBig(v);
        }
    }

    int curr_count;
    int st[N];
    vector<int> ord;

    void prepColorSmall1(int u) {
        color[u] = (curr_count >= 60 ? -1 : curr_count);
        ++curr_count;

        if (color[u] != -1) {
            st[u] = ord.size();
            ord.push_back(u);
        }

        for (int v: g2[u]) {
            prepColorSmall1(v);
            if(color[u] != -1 && ord.back() != u) ord.push_back(u);
        }
    }

    void solve() {
        par[0] = -1;
        fill(color, color+N, -1);
        fill(last, last+N, -1);
        init_dfs(0);

        if(mxd >= 59) {
            colorBig(0);
            for(int i = 0; i < n; i++) {
                assert(color[i] != -1 && 0 <= color[i] && color[i] < 60);
                MessageBoard(i, X >> color[i] & 1);
            }
            return;
        }

        prepColorSmall1(0);
//        for(int x: ord) cerr << x << ' ';
//        cerr << endl;

        for(int i = 0; i < n; i++) {
            last[i] = i;
            while(color[last[i]] == -1) last[i] = par[last[i]];
        }

        for(int i = 0; i < n; i++) {
            if(color[i] != -1) continue;

            int idx = st[last[i]];
            int depth_diff = depth[i] - depth[last[i]];

            set<int> distinct_mods;
            while(distinct_mods.size() < 60 - depth_diff) {
                distinct_mods.insert(color[ord[idx]]);
                idx = (idx + 1) % ord.size();
            }

            for(int mod = 0; mod < 60; mod++) {
                if(!distinct_mods.count(mod)) {
                    color[i] = mod;
                    break;
                }
            }
            assert(ord[st[last[i]]] == last[i]);

//            cerr << i << ' ' << last[i] << ' ' << color[i] << endl;
        }

        for(int i = 0; i < n; i++) {
            assert(color[i] != -1 && 0 <= color[i] && color[i] < 60);
            MessageBoard(i, X >> color[i] & 1);
        }
    }

    Solver_Joi(int n, int m, long long X, int A[], int B[]): n(n), m(m), X(X) {
        for(int i = 0; i < m; i++) {
            g1[A[i]].push_back(B[i]);
            g1[B[i]].push_back(A[i]);
        }
    }
};

void Joi(int n, int m, int A[], int B[], long long X, int T) {
    Solver_Joi *solver = new Solver_Joi(n, m, X, A, B);
    solver->solve();
}
#include "Ioi.h"
#include <bits/stdc++.h>
using namespace std;
const int N = 1e4+1;

struct Solver_Ioi {
    int n, m, mxd, mxdv, P, V, color[N], last[N];
    long long X;
    vector<int> g1[N], g2[N];

    bool vis[N];
    int par[N], depth[N];

    void init_dfs(int u) {
        vis[u] = true;
        if (depth[u] > mxd) {
            mxd = depth[u];
            mxdv = u;
        }
        for (int v: g1[u]) {
            if (vis[v]) continue;
            g2[u].push_back(v);
            par[v] = u;
            depth[v] = depth[u] + 1;
            init_dfs(v);
        }
    }

    void colorBig(int u) {
        color[u] = depth[u] % 60;
        for (int v: g2[u]) {
            colorBig(v);
        }
    }

    int curr_count;
    int st[N];
    vector<int> ord;

    void prepColorSmall1(int u) {
        color[u] = (curr_count >= 60 ? -1 : curr_count);
        ++curr_count;

        if (color[u] != -1) {
            st[u] = ord.size();
            ord.push_back(u);
        }

        for (int v: g2[u]) {
            prepColorSmall1(v);
            if(color[u] != -1 && ord.back() != u) ord.push_back(u);
        }
    }

    void traverseUp(int v, int offset) { // check both cases where v is in top set and bottom set
        assert(v == last[v]);
        set<int> distinct_mods;
        int idx = st[v];
        while(distinct_mods.size() < 60 - offset) {
            long long tmp = Move(ord[idx]);
            assert(color[ord[idx]] != -1);
            X |= tmp << color[ord[idx]];
            distinct_mods.insert(color[ord[idx]]);
            idx = (idx + 1) % ord.size();
        }
        // is this inclusive or exclusive?
        // this function assumes that v has not been visited yet
    }

    void solve() {
        par[0] = -1;
        fill(color, color + N, -1);
        fill(last, last + N, -1);
        init_dfs(0);

        if (mxd >= 59) {
            colorBig(0);
            X |= 1ll * V << color[P];
            for(int v = par[P]; v >= 0; v = par[v]) {
                long long tmp = Move(v);
                X |= tmp << color[v];
            }
            vector<int> ord;
            for(int v = mxdv; v > 0; v = par[v]) ord.push_back(v);
            reverse(ord.begin(), ord.end());
            for(int v: ord) {
                long long tmp = Move(v);
                X |= tmp << color[v];
            }
            return;
        }

        prepColorSmall1(0);
        ord.pop_back();
//        for(int x: ord) cerr << x << ' ';
//        cerr << endl;

        for (int i = 0; i < n; i++) {
            last[i] = i;
            while (color[last[i]] == -1) last[i] = par[last[i]];
        }

        for(int i = 0; i < n; i++) {
            if(color[i] != -1) continue;

            int idx = st[last[i]];
            int depth_diff = depth[i] - depth[last[i]];

            set<int> distinct_mods;
            while(distinct_mods.size() < 60 - depth_diff) {
                distinct_mods.insert(color[ord[idx]]);
                idx = (idx + 1) % ord.size();
            }

            for(int mod = 0; mod < 60; mod++) {
                if(!distinct_mods.count(mod)) {
                    color[i] = mod;
                    break;
                }
            }
            assert(ord[st[last[i]]] == last[i]);

//            cerr << i << ' ' << last[i] << ' ' << color[i] << endl;
        }

        X |= 1ll * V << color[P];

        if(last[P] == P) {
            int nxt = ord[(st[P] + 1) % ord.size()];
            assert(last[nxt] == nxt);
            traverseUp(nxt, 0);
        } else {
            int v;
            for(v = par[P]; last[v] != v; v = par[v]) {
                long long tmp = Move(v);
                X |= tmp << color[v];
            }
            traverseUp(v, depth[v] - depth[last[v]]);
        }

    }

    Solver_Ioi(int n, int m, int P, int V, int A[], int B[]) : n(n), m(m), P(P), V(V) {
        for (int i = 0; i < m; i++) {
            g1[A[i]].push_back(B[i]);
            g1[B[i]].push_back(A[i]);
        }
    }
};

long long Ioi(int n, int m, int A[], int B[], int P, int V, int T) {
    Solver_Ioi *solverIoi = new Solver_Ioi(n, m, P, V, A, B);
    solverIoi->solve();
    return solverIoi->X;
}

Compilation message

Joi.cpp: In member function 'void Solver_Joi::solve()':
Joi.cpp:85:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             while(distinct_mods.size() < 60 - depth_diff) {
                   ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~

Ioi.cpp: In member function 'void Solver_Ioi::traverseUp(int, int)':
Ioi.cpp:59:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
         while(distinct_mods.size() < 60 - offset) {
               ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~
Ioi.cpp: In member function 'void Solver_Ioi::solve()':
Ioi.cpp:110:40: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
             while(distinct_mods.size() < 60 - depth_diff) {
                   ~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 6 ms 1920 KB Output is correct
2 Correct 7 ms 1920 KB Output is correct
3 Correct 11 ms 1924 KB Output is correct
4 Correct 6 ms 1920 KB Output is correct
5 Correct 5 ms 1920 KB Output is correct
6 Correct 6 ms 1928 KB Output is correct
7 Correct 5 ms 1924 KB Output is correct
8 Correct 9 ms 1924 KB Output is correct
9 Correct 8 ms 2032 KB Output is correct
10 Correct 7 ms 1920 KB Output is correct
11 Correct 9 ms 2116 KB Output is correct
12 Correct 5 ms 1928 KB Output is correct
13 Correct 9 ms 1924 KB Output is correct
14 Correct 10 ms 2060 KB Output is correct
15 Correct 8 ms 1924 KB Output is correct
16 Correct 9 ms 1952 KB Output is correct
17 Correct 7 ms 1924 KB Output is correct
18 Correct 9 ms 1924 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 33 ms 5644 KB Output is correct
2 Correct 35 ms 5636 KB Output is correct
3 Correct 35 ms 5800 KB Output is correct
4 Correct 104 ms 3976 KB Output is correct
5 Correct 25 ms 4760 KB Output is correct
6 Correct 25 ms 4376 KB Output is correct
7 Correct 23 ms 4504 KB Output is correct
8 Correct 24 ms 4564 KB Output is correct
9 Correct 27 ms 4524 KB Output is correct
10 Correct 118 ms 3988 KB Output is correct
11 Correct 129 ms 3984 KB Output is correct
12 Correct 92 ms 3832 KB Output is correct
13 Correct 89 ms 4080 KB Output is correct
14 Correct 96 ms 3972 KB Output is correct
15 Correct 124 ms 4360 KB Output is correct
16 Correct 108 ms 4232 KB Output is correct
17 Correct 113 ms 4112 KB Output is correct
18 Correct 121 ms 4120 KB Output is correct
19 Correct 106 ms 4396 KB Output is correct
20 Correct 19 ms 4632 KB Output is correct
21 Correct 19 ms 4504 KB Output is correct
22 Correct 25 ms 4296 KB Output is correct
23 Correct 23 ms 4384 KB Output is correct
24 Correct 31 ms 4248 KB Output is correct
25 Correct 25 ms 4504 KB Output is correct
26 Correct 25 ms 4448 KB Output is correct
27 Correct 27 ms 4688 KB Output is correct
28 Correct 30 ms 4580 KB Output is correct
29 Correct 22 ms 4352 KB Output is correct
30 Correct 23 ms 4236 KB Output is correct
31 Correct 7 ms 1928 KB Output is correct
32 Correct 6 ms 1920 KB Output is correct
33 Correct 8 ms 2188 KB Output is correct
34 Correct 6 ms 1928 KB Output is correct
35 Correct 6 ms 2048 KB Output is correct
36 Correct 6 ms 1972 KB Output is correct
37 Correct 6 ms 1932 KB Output is correct
38 Correct 5 ms 1920 KB Output is correct
39 Correct 7 ms 1920 KB Output is correct
40 Correct 5 ms 2056 KB Output is correct
41 Correct 6 ms 1920 KB Output is correct
42 Correct 5 ms 1920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 1928 KB Output is correct
2 Correct 5 ms 1920 KB Output is correct
3 Correct 5 ms 1928 KB Output is correct
4 Incorrect 7 ms 2460 KB Output isn't correct
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 33 ms 5848 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 32 ms 5736 KB Output isn't correct
2 Halted 0 ms 0 KB -