답안 #1074285

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1074285 2024-08-25T09:23:12 Z Zanite Board Game (JOI24_boardgame) C++17
17 / 100
3134 ms 123876 KB
// こんな僕等がお互い蹴落として
// まで掴んだ物は何ですか
// 僕は 僕を愛してあげたい
// 
// こんなことなら生まれてこなけりゃって
// 全部嫌になってくけれど
// 絶えず 脈打つこれは何だろう
// 
// 何だろう...

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

// Pragmas
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

// Namespaces
using namespace std;
using namespace __gnu_pbds;

// Data types
using si  = short int;
using ll  = long long;
using ull = unsigned long long;
using lll = __int128;
using ld  = long double;

// Pairs
using pii  = pair<int, int>;
using psi  = pair<si, si>;
using pll  = pair<ll, ll>;
using plll = pair<lll, lll>;
using pld  = pair<ld, ld>;
#define fi first
#define se second

// PBDS
template<typename Z>
using ordered_set = tree<Z, null_type, less<Z>, rb_tree_tag, tree_order_statistics_node_update>;

// Various outputs and debug
template<typename Z, typename = void> struct is_iterable : false_type {};
template<typename Z> struct is_iterable<Z, void_t<decltype(begin(declval<Z>())),decltype(end(declval<Z>()))>> : true_type {};
template<typename Z> typename enable_if<is_iterable<Z>::value&&!is_same<Z, string>::value,ostream&>::type operator<<(ostream &os, const Z &v);

template<typename Y, typename Z> ostream& operator<<(ostream &os, const pair<Y, Z> &p) {
   return os << "(" << p.fi << ", " << p.se << ")";
}
template<class TupType, size_t... I> void printTuple(ostream& os, const TupType& _tup, index_sequence<I...>) {
   os << "(";
   (..., (os << (I == 0? "" : ", ") << get<I>(_tup)));
   os << ")";
}
template<class... Z> ostream& operator<<(ostream& os, const tuple<Z...>& _tup) {
   printTuple(os, _tup, make_index_sequence<sizeof...(Z)>());
   return os;
}
template<typename Z> typename enable_if<is_iterable<Z>::value&&!is_same<Z, string>::value,ostream&>::type operator<<(ostream &os, const Z &v) {
   os << "["; 
   for (auto it = v.begin(); it != v.end();) { os << *it; if (++it != v.end()) os << ", "; }
   return os << "]";
}

#define debug(...)   logger(cout, #__VA_ARGS__, __VA_ARGS__)
#define debugV(v, x)  vlogger(cout, #v, x, v[x]);
#define rrebug(...)   logger(cerr, #__VA_ARGS__, __VA_ARGS__)
#define rrebugV(v, x) vlogger(cerr, #v, x, v[x]);
template <typename... Args>
void logger(ostream& os, string vars, Args &&...values) {
   os << vars << " = "; string delim = "";
   (..., (os << delim << values, delim = ", "));
   os << "\n";
}
template<class Y, class Z>
void vlogger(ostream& os, string var, Y idx, Z val) {
   os << var << "[" << idx << "] = " << val << "\n";
}

// Various macros
#define All(x)         x.begin(), x.end()
#define Sort(x)         sort(All(x))
#define Reverse(x)      reverse(All(x))
#define Uniqueify(x)     Sort(x); x.erase(unique(All(x)), x.end())
#define RandomSeed      chrono::steady_clock::now().time_since_epoch().count()
#define MultipleTestcases int _tc; cin >> _tc; for (int _cur_tc = 1; _cur_tc <= _tc; _cur_tc++)

// Chmin & chmax
template<typename Z> bool chmin(Z &a, Z b) { return (b < a) ? a = b, true : false; }
template<typename Z> bool chmax(Z &a, Z b) { return (b > a) ? a = b, true : false; }
 
// Modular arithmetic
template<int MOD>
class ModInt {
  public:
   int v;
   ModInt() : v(0) {}
   ModInt(long long _v) {
      v = int((-MOD < _v && _v < MOD) ? (_v) : (_v % MOD));
      if (v < 0) v += MOD;
   }
 
   friend bool operator==(const ModInt &a, const ModInt &b) { return a.v == b.v; }
   friend bool operator!=(const ModInt &a, const ModInt &b) { return a.v != b.v; }
   friend bool operator< (const ModInt &a, const ModInt &b) { return a.v <  b.v; }
   friend bool operator<=(const ModInt &a, const ModInt &b) { return a.v <= b.v; }
   friend bool operator> (const ModInt &a, const ModInt &b) { return a.v >  b.v; }
   friend bool operator>=(const ModInt &a, const ModInt &b) { return a.v >= b.v; }
 
   ModInt &operator+=(const ModInt &a) { if ((v += a.v) >= MOD) v -= MOD; return *this; }
   ModInt &operator-=(const ModInt &a) { if ((v -= a.v) < 0) v += MOD; return *this; }
   ModInt &operator*=(const ModInt &a) { v = 1ll * v * a.v % MOD; return *this; }
   ModInt &operator/=(const ModInt &a) { return (*this) *= inverse(a); }
 
   friend ModInt pow(ModInt a, long long x) {
      ModInt res = 1;
      for (; x; x /= 2, a *= a) if (x & 1) res *= a;
      return res;
   }
   friend ModInt inverse(ModInt a) { return pow(a, MOD - 2); }
 
   ModInt operator+ () const { return ModInt( v); }
   ModInt operator- () const { return ModInt(-v); }
   ModInt operator++() const { return *this += 1; }
   ModInt operator--() const { return *this -= 1; }
 
   friend ModInt operator+(ModInt a, const ModInt &b) { return a += b; }
   friend ModInt operator-(ModInt a, const ModInt &b) { return a -= b; }
   friend ModInt operator*(ModInt a, const ModInt &b) { return a *= b; }
   friend ModInt operator/(ModInt a, const ModInt &b) { return a /= b; }
 
   friend istream &operator>>(istream &is, ModInt &v) { return is >> v.v; }
   friend ostream &operator<<(ostream &os, const ModInt &v) { return os << v.v; }
};
const int ModA = 998244353;
const int ModC = 1e9 + 7;
using MintA   = ModInt<ModA>;
using MintC   = ModInt<ModC>;

// Other constants
const ll INF  = 1e18;
const ll iINF = 1e9;
const ld EPS  = 1e-9;
const ld iEPS = 1e-6;

const int maxN  = 50'023;
const int THRES = 250;

int N, M, K;
vector<int> board[maxN];
bool state[maxN];
int st_pos[maxN];

ll dist_single[maxN], dist_double[maxN];
vector<pll> adj_single[maxN], adj_double[maxN];

ll total_cost[maxN];
ll tmp_dist[2][maxN], ans[maxN];

int min_stops[maxN];
ll fin_dist[THRES][maxN];
bool fin_vis[THRES][maxN];

void dijkstra(ll* dist, vector<pll> *adj) {
   vector<bool> vis(N + 1, false);
   priority_queue<pll, vector<pll>, greater<pll>> pyqe;
   for (int i = 1; i <= N; i++) {
      pyqe.push({dist[i], i});
   }

   while (!pyqe.empty()) {
      int cur = pyqe.top().se; pyqe.pop();
      if (vis[cur]) continue;

      vis[cur] = true;
      for (auto [nxt, w] : adj[cur]) {
         if (dist[nxt] > dist[cur] + w) {
            dist[nxt] = dist[cur] + w;
            pyqe.push({dist[nxt], nxt});
         }
      }
   }
}

void linear_dijkstra(ll m, ll c) {
   // {dist, gone at least once to stop, vertex}
   using State = tuple<ll, int, int>;

   for (int i = 1; i <= N; i++) {
      tmp_dist[0][i] = tmp_dist[1][i] = INF;
   }

   vector vis(2, vector(N + 1, false));
   priority_queue<State, vector<State>, greater<State>> pyqe;
   tmp_dist[0][st_pos[1]] = c;
   pyqe.push({c, 0, st_pos[1]});

   while (!pyqe.empty()) {
      auto [_, cs, cv] = pyqe.top(); pyqe.pop();
      if (vis[cs][cv]) continue;

      vis[cs][cv] = true;
      // cout << make_pair(cs, cv) << ": " << _ << "\n";
      for (auto nxt : board[cv]) {
         bool stop_state = (state[cv] && cv != st_pos[1]);
         ll w = (stop_state ? m : 0ll) + 1ll;
         int ns = cs | stop_state;
         if (tmp_dist[ns][nxt] > tmp_dist[cs][cv] + w) {
            tmp_dist[ns][nxt] = tmp_dist[cs][cv] + w;
            pyqe.push({tmp_dist[ns][nxt], ns, nxt});
         }
      }
   }

   for (int i = 1; i <= N; i++) {
      chmin(ans[i], tmp_dist[1][i]);
   }

   // debug(m, c, s);
   // for (int i = 1; i <= N; i++) {
   //    if (tmp_dist[1][i] >= INF) cout << "- ";
   //    else cout << tmp_dist[1][i] << " ";
   // }
   // cout << "\n\n";
}

void solve_reachable() {
   for (int i = 1; i <= N; i++) ans[i] = INF;
   ans[st_pos[1]] = 0;

   vector<bool> vis(N + 1, false);
   queue<int> q;
   for (int i = 1; i <= N; i++) q.push(st_pos[1]);

   while (!q.empty()) {
      int cur = q.front(); q.pop();
      if (vis[cur]) continue;

      vis[cur] = true;
      bool stop_state = (state[cur] && cur != st_pos[1]);
      if (stop_state) continue;
      for (auto nxt : board[cur]) {
         if (ans[nxt] > ans[cur] + 1) {
            ans[nxt] = ans[cur] + 1;
            q.push(nxt);
         }
      }
   }
}

void solve_small_k() {
   vector<pll> lines;
   for (int i = 2; i <= N; i++) {
      ll m = total_cost[i] - total_cost[i-1];
      ll c = total_cost[i] - (ll)i * m;
      lines.push_back({m, c});
   }
   Uniqueify(lines);
   // debug(lines);

   for (auto [m, c] : lines) linear_dijkstra(m, c);
}

void solve_large_k() {
   // get minimum stops needed to get to each node
   {
      for (int i = 1; i <= N; i++) min_stops[i] = iINF;
      min_stops[st_pos[1]] = 0;
      deque<int> dq;
      dq.push_back(st_pos[1]);

      vector<bool> vis(N+1, false);
      while (!dq.empty()) {
         int cur = dq.front(); dq.pop_front();
         if (vis[cur]) continue;

         vis[cur] = true;
         for (auto nxt : board[cur]) {
            int w = (state[cur] && cur != st_pos[1]);
            if (min_stops[nxt] > min_stops[cur] + w) {
               min_stops[nxt] = min_stops[cur] + w;
               if (w) dq.push_back(nxt);
               else dq.push_front(nxt);
            }
         }
      }
   }
   
   // Dijkstra with extra states
   {
      for (int ad = 0; ad < THRES; ad++) {
         for (int i = 1; i <= N; i++) fin_dist[ad][i] = INF;
      }
      queue<pii> q;
      q.push({0, st_pos[1]});
      fin_dist[0][st_pos[1]] = 0;

      while (!q.empty()) {
         auto [ad, cur] = q.front(); q.pop();
         if (fin_vis[ad][cur]) continue;

         fin_vis[ad][cur] = true;
         for (auto nxt : board[cur]) {
            bool stop_state = (state[cur] && cur != st_pos[1]);
            int nxt_ad = ad + min_stops[cur] - min_stops[nxt] + stop_state;
            if (0 <= nxt_ad && nxt_ad < THRES) {
               if (fin_dist[nxt_ad][nxt] > fin_dist[ad][cur] + 1) {
                  fin_dist[nxt_ad][nxt] = fin_dist[ad][cur] + 1;
                  q.push({nxt_ad, nxt});
               }
            }
         }
      }
   }

   for (int i = 1; i <= N; i++) {
      ans[i] = INF;
      for (int ad = 0; ad < THRES; ad++) {
         int act = ad + min_stops[i];
         if (act > N) break;
         // if (fin_dist[ad][i] + total_cost[act] < 0) {
         //    debug(ad, i, fin_dist[ad][i], total_cost[act]);
         //    exit(0);
         // }
         // debug(i, act, fin_dist[ad][i], total_cost[act]);
         chmin(ans[i], fin_dist[ad][i] + total_cost[act]);
      }
   }
}

void solve() {
   // compute distances to single and double stop nodes
   for (int i = 1; i <= N; i++) dist_single[i] = dist_double[i] = INF;

   for (int i = 1; i <= N; i++) {
      for (auto j : board[i]) {
         adj_single[i].push_back({j, 1});
         adj_double[i].push_back({j, !state[i]});
      }
      if (state[i]) {
         dist_single[i] = 0;
         for (auto j : board[i]) {
            if (state[j]) dist_double[i] = dist_double[j] = 0;
         }
      }
   }

   dijkstra(dist_single, adj_single);
   dijkstra(dist_double, adj_double);

   for (int i = 1; i <= N; i++) {
      if (dist_single[i] == 0) dist_single[i] = 2;
      // debug(i, dist_single[i], dist_double[i]);
   }

   for (int i = 2; i <= K; i++) {
      ll c_single = dist_single[st_pos[i]] - 2;
      ll c_double = dist_double[st_pos[i]];

      // binary search switching position from single to double
      for (int j = 1; j <= N; j++) {
         total_cost[j] += min(
            2ll * j + c_single,
            1ll * j + c_double
         );
         chmin(total_cost[j], INF);
      }
   }

   // for (int i = 1; i <= N; i++) debugV(total_cost, i);

   // solve_small_k();
   solve_large_k();

   // if (K <= THRES) solve_small_k();
   // else solve_large_k();

   for (int i = 1; i <= N; i++) {
      printf("%lld\n", ans[i]);
   }
}

int main() {
   scanf("%d %d %d", &N, &M, &K);
   for (int u, v, i = 1; i <= M; i++) {
      scanf("%d %d", &u, &v);
      board[u].push_back(v);
      board[v].push_back(u);
   }
   for (int i = 1; i <= N; i++) {
      char buf;
      scanf(" %c", &buf);
      state[i] = (buf == '1');
   }
   for (int i = 1; i <= N; i++) scanf("%d", &st_pos[i]);

   solve_reachable();
   solve();
}

// dibisakan

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:386:9: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  386 |    scanf("%d %d %d", &N, &M, &K);
      |    ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
Main.cpp:388:12: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  388 |       scanf("%d %d", &u, &v);
      |       ~~~~~^~~~~~~~~~~~~~~~~
Main.cpp:394:12: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  394 |       scanf(" %c", &buf);
      |       ~~~~~^~~~~~~~~~~~~
Main.cpp:397:38: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  397 |    for (int i = 1; i <= N; i++) scanf("%d", &st_pos[i]);
      |                                 ~~~~~^~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 11580 KB Output is correct
2 Correct 852 ms 69596 KB Output is correct
3 Correct 2181 ms 111712 KB Output is correct
4 Correct 130 ms 111328 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 36 ms 13392 KB Output is correct
2 Correct 1284 ms 77832 KB Output is correct
3 Correct 1411 ms 123524 KB Output is correct
4 Correct 1329 ms 123516 KB Output is correct
5 Correct 2570 ms 123848 KB Output is correct
6 Correct 846 ms 123332 KB Output is correct
7 Correct 1123 ms 102456 KB Output is correct
8 Correct 1426 ms 117784 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 66 ms 13360 KB Output is correct
2 Correct 1427 ms 77820 KB Output is correct
3 Correct 1146 ms 123396 KB Output is correct
4 Correct 1403 ms 123536 KB Output is correct
5 Correct 3134 ms 123876 KB Output is correct
6 Correct 905 ms 123444 KB Output is correct
7 Correct 1006 ms 123392 KB Output is correct
8 Correct 2970 ms 123860 KB Output is correct
9 Correct 314 ms 34744 KB Output is correct
10 Correct 227 ms 34756 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 9928 KB Output is correct
2 Correct 34 ms 13392 KB Output is correct
3 Correct 33 ms 13392 KB Output is correct
4 Correct 33 ms 13392 KB Output is correct
5 Correct 23 ms 11100 KB Output is correct
6 Correct 25 ms 11100 KB Output is correct
7 Incorrect 18 ms 9820 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 923 ms 123372 KB Output is correct
2 Correct 1117 ms 123516 KB Output is correct
3 Correct 1324 ms 123508 KB Output is correct
4 Correct 1004 ms 123612 KB Output is correct
5 Correct 1051 ms 123520 KB Output is correct
6 Correct 1074 ms 102404 KB Output is correct
7 Correct 264 ms 34412 KB Output is correct
8 Incorrect 250 ms 60768 KB Output isn't correct
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 923 ms 123372 KB Output is correct
2 Correct 1117 ms 123516 KB Output is correct
3 Correct 1324 ms 123508 KB Output is correct
4 Correct 1004 ms 123612 KB Output is correct
5 Correct 1051 ms 123520 KB Output is correct
6 Correct 1074 ms 102404 KB Output is correct
7 Correct 264 ms 34412 KB Output is correct
8 Incorrect 250 ms 60768 KB Output isn't correct
9 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 9928 KB Output is correct
2 Correct 34 ms 13392 KB Output is correct
3 Correct 33 ms 13392 KB Output is correct
4 Correct 33 ms 13392 KB Output is correct
5 Correct 23 ms 11100 KB Output is correct
6 Correct 25 ms 11100 KB Output is correct
7 Incorrect 18 ms 9820 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 14 ms 11580 KB Output is correct
2 Correct 852 ms 69596 KB Output is correct
3 Correct 2181 ms 111712 KB Output is correct
4 Correct 130 ms 111328 KB Output is correct
5 Correct 36 ms 13392 KB Output is correct
6 Correct 1284 ms 77832 KB Output is correct
7 Correct 1411 ms 123524 KB Output is correct
8 Correct 1329 ms 123516 KB Output is correct
9 Correct 2570 ms 123848 KB Output is correct
10 Correct 846 ms 123332 KB Output is correct
11 Correct 1123 ms 102456 KB Output is correct
12 Correct 1426 ms 117784 KB Output is correct
13 Correct 66 ms 13360 KB Output is correct
14 Correct 1427 ms 77820 KB Output is correct
15 Correct 1146 ms 123396 KB Output is correct
16 Correct 1403 ms 123536 KB Output is correct
17 Correct 3134 ms 123876 KB Output is correct
18 Correct 905 ms 123444 KB Output is correct
19 Correct 1006 ms 123392 KB Output is correct
20 Correct 2970 ms 123860 KB Output is correct
21 Correct 314 ms 34744 KB Output is correct
22 Correct 227 ms 34756 KB Output is correct
23 Correct 21 ms 9928 KB Output is correct
24 Correct 34 ms 13392 KB Output is correct
25 Correct 33 ms 13392 KB Output is correct
26 Correct 33 ms 13392 KB Output is correct
27 Correct 23 ms 11100 KB Output is correct
28 Correct 25 ms 11100 KB Output is correct
29 Incorrect 18 ms 9820 KB Output isn't correct
30 Halted 0 ms 0 KB -