답안 #1074273

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
1074273 2024-08-25T09:17:36 Z Zanite Board Game (JOI24_boardgame) C++17
46 / 100
3128 ms 123816 KB
// こんな僕等がお互い蹴落として
// まで掴んだ物は何ですか
// 僕は 僕を愛してあげたい
// 
// こんなことなら生まれてこなけりゃって
// 全部嫌になってくけれど
// 絶えず 脈打つこれは何だろう
// 
// 何だろう...

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

// Pragmas
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

// Namespaces
using namespace std;
using namespace __gnu_pbds;

// Data types
using si  = short int;
using ll  = long long;
using ull = unsigned long long;
using lll = __int128;
using ld  = long double;

// Pairs
using pii  = pair<int, int>;
using psi  = pair<si, si>;
using pll  = pair<ll, ll>;
using plll = pair<lll, lll>;
using pld  = pair<ld, ld>;
#define fi first
#define se second

// PBDS
template<typename Z>
using ordered_set = tree<Z, null_type, less<Z>, rb_tree_tag, tree_order_statistics_node_update>;

// Various outputs and debug
template<typename Z, typename = void> struct is_iterable : false_type {};
template<typename Z> struct is_iterable<Z, void_t<decltype(begin(declval<Z>())),decltype(end(declval<Z>()))>> : true_type {};
template<typename Z> typename enable_if<is_iterable<Z>::value&&!is_same<Z, string>::value,ostream&>::type operator<<(ostream &os, const Z &v);

template<typename Y, typename Z> ostream& operator<<(ostream &os, const pair<Y, Z> &p) {
   return os << "(" << p.fi << ", " << p.se << ")";
}
template<class TupType, size_t... I> void printTuple(ostream& os, const TupType& _tup, index_sequence<I...>) {
   os << "(";
   (..., (os << (I == 0? "" : ", ") << get<I>(_tup)));
   os << ")";
}
template<class... Z> ostream& operator<<(ostream& os, const tuple<Z...>& _tup) {
   printTuple(os, _tup, make_index_sequence<sizeof...(Z)>());
   return os;
}
template<typename Z> typename enable_if<is_iterable<Z>::value&&!is_same<Z, string>::value,ostream&>::type operator<<(ostream &os, const Z &v) {
   os << "["; 
   for (auto it = v.begin(); it != v.end();) { os << *it; if (++it != v.end()) os << ", "; }
   return os << "]";
}

#define debug(...)   logger(cout, #__VA_ARGS__, __VA_ARGS__)
#define debugV(v, x)  vlogger(cout, #v, x, v[x]);
#define rrebug(...)   logger(cerr, #__VA_ARGS__, __VA_ARGS__)
#define rrebugV(v, x) vlogger(cerr, #v, x, v[x]);
template <typename... Args>
void logger(ostream& os, string vars, Args &&...values) {
   os << vars << " = "; string delim = "";
   (..., (os << delim << values, delim = ", "));
   os << "\n";
}
template<class Y, class Z>
void vlogger(ostream& os, string var, Y idx, Z val) {
   os << var << "[" << idx << "] = " << val << "\n";
}

// Various macros
#define All(x)         x.begin(), x.end()
#define Sort(x)         sort(All(x))
#define Reverse(x)      reverse(All(x))
#define Uniqueify(x)     Sort(x); x.erase(unique(All(x)), x.end())
#define RandomSeed      chrono::steady_clock::now().time_since_epoch().count()
#define MultipleTestcases int _tc; cin >> _tc; for (int _cur_tc = 1; _cur_tc <= _tc; _cur_tc++)

// Chmin & chmax
template<typename Z> bool chmin(Z &a, Z b) { return (b < a) ? a = b, true : false; }
template<typename Z> bool chmax(Z &a, Z b) { return (b > a) ? a = b, true : false; }
 
// Modular arithmetic
template<int MOD>
class ModInt {
  public:
   int v;
   ModInt() : v(0) {}
   ModInt(long long _v) {
      v = int((-MOD < _v && _v < MOD) ? (_v) : (_v % MOD));
      if (v < 0) v += MOD;
   }
 
   friend bool operator==(const ModInt &a, const ModInt &b) { return a.v == b.v; }
   friend bool operator!=(const ModInt &a, const ModInt &b) { return a.v != b.v; }
   friend bool operator< (const ModInt &a, const ModInt &b) { return a.v <  b.v; }
   friend bool operator<=(const ModInt &a, const ModInt &b) { return a.v <= b.v; }
   friend bool operator> (const ModInt &a, const ModInt &b) { return a.v >  b.v; }
   friend bool operator>=(const ModInt &a, const ModInt &b) { return a.v >= b.v; }
 
   ModInt &operator+=(const ModInt &a) { if ((v += a.v) >= MOD) v -= MOD; return *this; }
   ModInt &operator-=(const ModInt &a) { if ((v -= a.v) < 0) v += MOD; return *this; }
   ModInt &operator*=(const ModInt &a) { v = 1ll * v * a.v % MOD; return *this; }
   ModInt &operator/=(const ModInt &a) { return (*this) *= inverse(a); }
 
   friend ModInt pow(ModInt a, long long x) {
      ModInt res = 1;
      for (; x; x /= 2, a *= a) if (x & 1) res *= a;
      return res;
   }
   friend ModInt inverse(ModInt a) { return pow(a, MOD - 2); }
 
   ModInt operator+ () const { return ModInt( v); }
   ModInt operator- () const { return ModInt(-v); }
   ModInt operator++() const { return *this += 1; }
   ModInt operator--() const { return *this -= 1; }
 
   friend ModInt operator+(ModInt a, const ModInt &b) { return a += b; }
   friend ModInt operator-(ModInt a, const ModInt &b) { return a -= b; }
   friend ModInt operator*(ModInt a, const ModInt &b) { return a *= b; }
   friend ModInt operator/(ModInt a, const ModInt &b) { return a /= b; }
 
   friend istream &operator>>(istream &is, ModInt &v) { return is >> v.v; }
   friend ostream &operator<<(ostream &os, const ModInt &v) { return os << v.v; }
};
const int ModA = 998244353;
const int ModC = 1e9 + 7;
using MintA   = ModInt<ModA>;
using MintC   = ModInt<ModC>;

// Other constants
const ll INF  = 1e18;
const ll iINF = 1e9;
const ld EPS  = 1e-9;
const ld iEPS = 1e-6;

const int maxN  = 50'023;
const int THRES = 250;

int N, M, K;
vector<int> board[maxN];
bool state[maxN];
int st_pos[maxN];

ll dist_single[maxN], dist_double[maxN];
vector<pll> adj_single[maxN], adj_double[maxN];

ll total_cost[maxN];
ll tmp_dist[2][maxN], ans[maxN];

int min_stops[maxN];
ll fin_dist[THRES][maxN];
bool fin_vis[THRES][maxN];

void dijkstra(ll* dist, vector<pll> *adj) {
   vector<bool> vis(N + 1, false);
   priority_queue<pll, vector<pll>, greater<pll>> pyqe;
   for (int i = 1; i <= N; i++) {
      pyqe.push({dist[i], i});
   }

   while (!pyqe.empty()) {
      int cur = pyqe.top().se; pyqe.pop();
      if (vis[cur]) continue;

      vis[cur] = true;
      for (auto [nxt, w] : adj[cur]) {
         if (dist[nxt] > dist[cur] + w) {
            dist[nxt] = dist[cur] + w;
            pyqe.push({dist[nxt], nxt});
         }
      }
   }
}

void linear_dijkstra(ll m, ll c) {
   // {dist, gone at least once to stop, vertex}
   using State = tuple<ll, int, int>;

   for (int i = 1; i <= N; i++) {
      tmp_dist[0][i] = tmp_dist[1][i] = INF;
   }

   vector vis(2, vector(N + 1, false));
   priority_queue<State, vector<State>, greater<State>> pyqe;
   tmp_dist[0][st_pos[1]] = c;
   pyqe.push({c, 0, st_pos[1]});

   while (!pyqe.empty()) {
      auto [_, cs, cv] = pyqe.top(); pyqe.pop();
      if (vis[cs][cv]) continue;

      vis[cs][cv] = true;
      // cout << make_pair(cs, cv) << ": " << _ << "\n";
      for (auto nxt : board[cv]) {
         bool stop_state = (state[cv] && cv != st_pos[1]);
         ll w = (stop_state ? m : 0ll) + 1ll;
         int ns = cs | stop_state;
         if (tmp_dist[ns][nxt] > tmp_dist[cs][cv] + w) {
            tmp_dist[ns][nxt] = tmp_dist[cs][cv] + w;
            pyqe.push({tmp_dist[ns][nxt], ns, nxt});
         }
      }
   }

   for (int i = 1; i <= N; i++) {
      chmin(ans[i], tmp_dist[1][i]);
   }

   // debug(m, c, s);
   // for (int i = 1; i <= N; i++) {
   //    if (tmp_dist[1][i] >= INF) cout << "- ";
   //    else cout << tmp_dist[1][i] << " ";
   // }
   // cout << "\n\n";
}

void solve_reachable() {
   for (int i = 1; i <= N; i++) ans[i] = INF;
   ans[st_pos[1]] = 0;

   vector<bool> vis(N + 1, false);
   queue<int> q;
   for (int i = 1; i <= N; i++) q.push(st_pos[1]);

   while (!q.empty()) {
      int cur = q.front(); q.pop();
      if (vis[cur]) continue;

      vis[cur] = true;
      bool stop_state = (state[cur] && cur != st_pos[1]);
      if (stop_state) continue;
      for (auto nxt : board[cur]) {
         if (ans[nxt] > ans[cur] + 1) {
            ans[nxt] = ans[cur] + 1;
            q.push(nxt);
         }
      }
   }
}

void solve_small_k() {
   vector<pll> lines;
   for (int i = 2; i <= N; i++) {
      ll m = total_cost[i] - total_cost[i-1];
      ll c = total_cost[i] - (ll)i * m;
      lines.push_back({m, c});
   }
   Uniqueify(lines);
   // debug(lines);

   for (auto [m, c] : lines) linear_dijkstra(m, c);
}

void solve_large_k() {
   // get minimum stops needed to get to each node
   {
      for (int i = 1; i <= N; i++) min_stops[i] = iINF;
      min_stops[st_pos[1]] = 0;
      deque<int> dq;
      dq.push_back(st_pos[1]);

      vector<bool> vis(N+1, false);
      while (!dq.empty()) {
         int cur = dq.front(); dq.pop_front();
         if (vis[cur]) continue;

         vis[cur] = true;
         for (auto nxt : board[cur]) {
            int w = (state[cur] && cur != st_pos[1]);
            if (min_stops[nxt] > min_stops[cur] + w) {
               min_stops[nxt] = min_stops[cur] + w;
               if (w) dq.push_back(nxt);
               else dq.push_front(nxt);
            }
         }
      }
   }
   
   // Dijkstra with extra states
   {
      for (int ad = 0; ad < THRES; ad++) {
         for (int i = 1; i <= N; i++) fin_dist[ad][i] = INF;
      }
      queue<pii> q;
      q.push({0, st_pos[1]});
      fin_dist[0][st_pos[1]] = 0;

      while (!q.empty()) {
         auto [ad, cur] = q.front(); q.pop();
         if (fin_vis[ad][cur]) continue;

         fin_vis[ad][cur] = true;
         for (auto nxt : board[cur]) {
            bool stop_state = (state[cur] && cur != st_pos[1]);
            int nxt_ad = ad + min_stops[cur] - min_stops[nxt] + stop_state;
            if (0 <= nxt_ad && nxt_ad < THRES) {
               if (fin_dist[nxt_ad][nxt] > fin_dist[ad][cur] + 1) {
                  fin_dist[nxt_ad][nxt] = fin_dist[ad][cur] + 1;
                  q.push({nxt_ad, nxt});
               }
            }
         }
      }
   }

   for (int i = 1; i <= N; i++) {
      ans[i] = INF;
      for (int ad = 0; ad < THRES; ad++) {
         int act = ad + min_stops[i];
         if (act > N) break;
         // debug(i, act, fin_dist[ad][i], total_cost[act]);
         chmin(ans[i], fin_dist[ad][i] + total_cost[act]);
      }
   }
}

void solve() {
   // compute distances to single and double stop nodes
   for (int i = 1; i <= N; i++) dist_single[i] = dist_double[i] = INF;

   for (int i = 1; i <= N; i++) {
      for (auto j : board[i]) {
         adj_single[i].push_back({j, 1});
         adj_double[i].push_back({j, !state[i]});
      }
      if (state[i]) {
         dist_single[i] = 0;
         for (auto j : board[i]) {
            if (state[j]) dist_double[i] = dist_double[j] = 0;
         }
      }
   }

   dijkstra(dist_single, adj_single);
   dijkstra(dist_double, adj_double);

   for (int i = 1; i <= N; i++) {
      if (dist_single[i] == 0) dist_single[i] = 2;
      // debug(i, dist_single[i], dist_double[i]);
   }

   for (int i = 2; i <= K; i++) {
      ll c_single = dist_single[st_pos[i]] - 2;
      ll c_double = dist_double[st_pos[i]];

      // binary search switching position from single to double
      for (int j = 1; j <= N; j++) {
         total_cost[j] += min(
            2ll * j + c_single,
            1ll * j + c_double
         );
      }
   }

   // for (int i = 1; i <= N; i++) debugV(total_cost, i);

   // solve_large_k();

   if (K <= THRES) solve_small_k();
   else solve_large_k();

   for (int i = 1; i <= N; i++) {
      printf("%lld\n", ans[i]);
   }
}

int main() {
   scanf("%d %d %d", &N, &M, &K);
   for (int u, v, i = 1; i <= M; i++) {
      scanf("%d %d", &u, &v);
      board[u].push_back(v);
      board[v].push_back(u);
   }
   for (int i = 1; i <= N; i++) {
      char buf;
      scanf(" %c", &buf);
      state[i] = (buf == '1');
   }
   for (int i = 1; i <= N; i++) scanf("%d", &st_pos[i]);

   solve_reachable();
   solve();
}

// dibisakan

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:380:9: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  380 |    scanf("%d %d %d", &N, &M, &K);
      |    ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
Main.cpp:382:12: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  382 |       scanf("%d %d", &u, &v);
      |       ~~~~~^~~~~~~~~~~~~~~~~
Main.cpp:388:12: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  388 |       scanf(" %c", &buf);
      |       ~~~~~^~~~~~~~~~~~~
Main.cpp:391:38: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  391 |    for (int i = 1; i <= N; i++) scanf("%d", &st_pos[i]);
      |                                 ~~~~~^~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Incorrect 15 ms 11664 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 39 ms 13452 KB Output is correct
2 Correct 1351 ms 77836 KB Output is correct
3 Correct 74 ms 15240 KB Output is correct
4 Correct 71 ms 15364 KB Output is correct
5 Correct 2880 ms 123736 KB Output is correct
6 Correct 66 ms 15300 KB Output is correct
7 Correct 58 ms 14168 KB Output is correct
8 Correct 90 ms 14932 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 56 ms 13220 KB Output is correct
2 Correct 1396 ms 77808 KB Output is correct
3 Correct 1218 ms 123304 KB Output is correct
4 Correct 1541 ms 123424 KB Output is correct
5 Correct 3128 ms 123816 KB Output is correct
6 Correct 77 ms 15184 KB Output is correct
7 Correct 70 ms 15352 KB Output is correct
8 Correct 2891 ms 123032 KB Output is correct
9 Correct 309 ms 34232 KB Output is correct
10 Correct 25 ms 10204 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 4444 KB Output is correct
2 Correct 6 ms 4532 KB Output is correct
3 Correct 47 ms 13400 KB Output is correct
4 Correct 6 ms 4444 KB Output is correct
5 Correct 6 ms 4444 KB Output is correct
6 Correct 4 ms 4444 KB Output is correct
7 Incorrect 18 ms 9880 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 61 ms 14620 KB Output is correct
2 Correct 92 ms 14740 KB Output is correct
3 Correct 55 ms 14756 KB Output is correct
4 Correct 73 ms 14836 KB Output is correct
5 Correct 101 ms 14656 KB Output is correct
6 Correct 49 ms 13588 KB Output is correct
7 Correct 27 ms 10568 KB Output is correct
8 Correct 27 ms 9704 KB Output is correct
9 Correct 24 ms 9836 KB Output is correct
10 Correct 45 ms 14188 KB Output is correct
11 Correct 51 ms 14188 KB Output is correct
12 Correct 65 ms 15036 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 61 ms 14620 KB Output is correct
2 Correct 92 ms 14740 KB Output is correct
3 Correct 55 ms 14756 KB Output is correct
4 Correct 73 ms 14836 KB Output is correct
5 Correct 101 ms 14656 KB Output is correct
6 Correct 49 ms 13588 KB Output is correct
7 Correct 27 ms 10568 KB Output is correct
8 Correct 27 ms 9704 KB Output is correct
9 Correct 24 ms 9836 KB Output is correct
10 Correct 45 ms 14188 KB Output is correct
11 Correct 51 ms 14188 KB Output is correct
12 Correct 65 ms 15036 KB Output is correct
13 Correct 69 ms 15452 KB Output is correct
14 Correct 63 ms 15360 KB Output is correct
15 Correct 182 ms 15460 KB Output is correct
16 Correct 167 ms 15216 KB Output is correct
17 Correct 38 ms 14148 KB Output is correct
18 Correct 144 ms 14172 KB Output is correct
19 Correct 134 ms 13688 KB Output is correct
20 Correct 64 ms 15348 KB Output is correct
21 Correct 27 ms 9944 KB Output is correct
22 Correct 32 ms 10400 KB Output is correct
23 Correct 33 ms 10408 KB Output is correct
24 Correct 46 ms 14344 KB Output is correct
25 Correct 58 ms 14884 KB Output is correct
26 Correct 62 ms 14844 KB Output is correct
27 Correct 41 ms 10408 KB Output is correct
28 Correct 174 ms 10528 KB Output is correct
29 Correct 313 ms 10400 KB Output is correct
30 Correct 68 ms 14888 KB Output is correct
31 Correct 325 ms 14904 KB Output is correct
32 Correct 546 ms 15044 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 4444 KB Output is correct
2 Correct 6 ms 4532 KB Output is correct
3 Correct 47 ms 13400 KB Output is correct
4 Correct 6 ms 4444 KB Output is correct
5 Correct 6 ms 4444 KB Output is correct
6 Correct 4 ms 4444 KB Output is correct
7 Incorrect 18 ms 9880 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 15 ms 11664 KB Output isn't correct
2 Halted 0 ms 0 KB -