Submission #1070317

# Submission time Handle Problem Language Result Execution time Memory
1070317 2024-08-22T13:08:07 Z GrindMachine Tricks of the Trade (CEOI23_trade) C++17
20 / 100
8000 ms 18632 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct fenwick {
    int n;
    vector<T> tr;
    int LOG = 0;

    fenwick() {

    }

    fenwick(int n_) {
        n = n_;
        tr = vector<T>(n + 1);
        while((1<<LOG) <= n) LOG++;
    }

    void reset(){
        fill(all(tr),0);
    }

    int lsb(int x) {
        return x & -x;
    }

    void pupd(int i, T v) {
        for(; i <= n; i += lsb(i)){
            tr[i] += v;
        }
    }

    T sum(int i) {
        T res = 0;
        for(; i; i ^= lsb(i)){
            res += tr[i];
        }
        return res;
    }

    T query(int l, int r) {
        if (l > r) return 0;
        T res = sum(r) - sum(l - 1);
        return res;
    }

    int lower_bound(T s){
        // first pos with sum >= s
        if(sum(n) < s) return n+1;
        int i = 0;
        rev(bit,LOG-1,0){
            int j = i+(1<<bit);
            if(j > n) conts;
            if(tr[j] < s){
                s -= tr[j];
                i = j;
            }
        }

        return i+1;
    }

    int upper_bound(T s){
        return lower_bound(s+1);
    }
};

void solve(int test_case)
{
    ll n,k; cin >> n >> k;
    vector<ll> a(n+5), b(n+5);
    rep1(i,n) cin >> a[i];
    rep1(i,n) cin >> b[i]; 
    vector<ll> p(n+5);
    rep1(i,n) p[i] = p[i-1]+a[i];

    multiset<ll> ms1,ms2;
    ll curr_sum = 0;
    ll lx = 1, rx = 0;

    auto transfer = [&](){
        while(!ms2.empty() and sz(ms1) < k){
            curr_sum += *ms2.rbegin();
            ms1.insert(*ms2.rbegin());
            ms2.erase(--ms2.end());
        }

        while(sz(ms1) > k){
            ll x = *ms1.begin();
            curr_sum -= x;
            ms1.erase(ms1.begin());
            ms2.insert(x);
        }

        if(ms2.empty()) return;

        while(true){
            ll mn1 = *ms1.begin(), mx2 = *ms2.rbegin();
            if(mn1 >= mx2) break;
            ms1.erase(ms1.find(mn1));
            ms2.erase(ms2.find(mx2));
            ms1.insert(mx2);
            ms2.insert(mn1);
            curr_sum += mx2-mn1;
        }
    };

    auto ins = [&](ll i){
        ms1.insert(b[i]);
        curr_sum += b[i];
        transfer();
    };

    auto del = [&](ll i){
        if(ms1.find(b[i]) != ms1.end()){
            ms1.erase(ms1.find(b[i]));
            curr_sum -= b[i];
        }
        else{
            ms2.erase(ms2.find(b[i]));
        }

        transfer();
    };

    auto f = [&](ll l, ll r){
        if(r-l+1 < k) return -inf2;
        
        // expand
        while(rx < r){
            rx++;
            ins(rx);
        }
        while(lx > l){
            lx--;
            ins(lx);
        }

        // contract
        while(rx > r){
            del(rx);
            rx--;
        }
        while(lx < l){
            del(lx);
            lx++;
        }

        ll sum = -(p[r]-p[l-1]);
        sum += curr_sum;
        return sum;
    };

    ll ans = -inf2;
    vector<pll> segs;

    auto upd = [&](ll l, ll r, ll x){
        if(x < ans) return;
        if(x > ans){
            segs.clear();
        }
        ans = x;
        segs.pb({l,r});
    };

    auto go = [&](ll l, ll r, ll optl, ll optr, auto &&go) -> void{
        if(l > r) return;
        ll mid = (l+r) >> 1;
        ll best = -inf2, optm = -1;

        for(int i = optl; i <= optr; ++i){
            ll cost = f(mid,i);
            if(cost >= best){
                best = cost;
                optm = i;
            }
            upd(mid,i,cost);
        }

        go(l,mid-1,optl,optm,go);
        go(mid+1,r,optm,optr,go);
    };

    go(1,n-k+1,1,n,go);
    cout << ans << endl;

    vector<ll> there(n+5);
    for(auto [l,r] : segs){
        map<ll,ll> mp;
        for(int i = l; i <= r; ++i){
            mp[b[i]]++;
        }

        ll val = -1;
        ll sum = 0;

        for(auto it = mp.rbegin(); it != mp.rend(); ++it){
            sum += it->ss;
            if(sum >= k){
                val = it->ff;
                break;
            }
        }

        for(int i = l; i <= r; ++i){
            if(b[i] >= val){
                there[i] = 1;
            }
        }
    }

    rep1(i,n) cout << there[i];
    cout << endl;
    return;

    vector<ll> c;
    rep1(i,n) c.pb(b[i]);
    c.pb(-1);
    sort(all(c));
    c.resize(unique(all(c))-c.begin());

    vector<ll> cb(n+5);
    rep1(i,n) cb[i] = lower_bound(all(c),b[i])-c.begin();

    vector<ll> pos[n+5];
    rep1(i,n) pos[cb[i]].pb(i);

    vector<array<ll,3>> here[n+5];
    ll siz = sz(segs);

    rep(i,siz){
        auto [l,r] = segs[i];
        here[(1+n)>>1].pb({l,r,i});
    }

    vector<ll> kth(siz);
    fenwick<ll> fenw(n+5);

    while(true){
        vector<array<ll,3>> nxt;
        fenw.reset();
        rev(mid,n,1){
            trav(i,pos[mid]){
                fenw.pupd(i,1);
            }

            for(auto [l,r,i] : here[mid]){
                ll cnt = fenw.query(l,r);
                if(cnt >= k){
                    kth[i] = mid;
                    nxt.pb({mid+1,r,i});
                }
                else{
                    nxt.pb({l,mid-1,i});
                }
            }
        }

        rep1(i,n) here[i].clear();
        
        bool ok = false;
        for(auto [l,r,i] : nxt){
            if(l > r) conts;
            ok = true;
            here[(l+r)>>1].pb({l,r,i});
        }

        if(!ok) break;
    }

    vector<ll> enter[n+5], leave[n+5];
    rep(i,siz){
        auto [l,r] = segs[i];
        enter[l].pb(kth[i]);
        leave[r+1].pb(kth[i]);
    }

    multiset<ll> ms;
    rep1(i,n){
        trav(x,enter[i]){
            ms.insert(x);
        }
        
        trav(x,leave[i]){
            ms.erase(ms.find(x));
        }

        if(!ms.empty() and cb[i] >= *ms.begin()){
            cout << 1;
        }
        else{
            cout << 0;
        }
    }

    cout << endl;
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 388 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 348 KB Output is correct
2 Correct 0 ms 344 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 1 ms 348 KB Output is correct
7 Correct 1 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 0 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 1 ms 348 KB Output is correct
19 Correct 1 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 344 KB Output is correct
23 Correct 2 ms 860 KB Output is correct
24 Correct 51 ms 852 KB Output is correct
25 Correct 341 ms 960 KB Output is correct
26 Correct 246 ms 860 KB Output is correct
27 Correct 246 ms 1240 KB Output is correct
28 Correct 13 ms 856 KB Output is correct
29 Correct 17 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 667 ms 17304 KB Output is correct
3 Correct 1022 ms 17268 KB Output is correct
4 Correct 878 ms 18632 KB Output is correct
5 Execution timed out 8064 ms 17044 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 667 ms 17304 KB Output is correct
3 Correct 1022 ms 17268 KB Output is correct
4 Correct 878 ms 18632 KB Output is correct
5 Execution timed out 8064 ms 17044 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 1 ms 388 KB Output is correct
3 Correct 1 ms 348 KB Output is correct
4 Correct 0 ms 344 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Correct 0 ms 348 KB Output is correct
7 Correct 0 ms 348 KB Output is correct
8 Correct 1 ms 348 KB Output is correct
9 Correct 1 ms 348 KB Output is correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 1 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Correct 0 ms 348 KB Output is correct
18 Correct 0 ms 348 KB Output is correct
19 Correct 0 ms 348 KB Output is correct
20 Correct 1 ms 348 KB Output is correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 344 KB Output is correct
25 Correct 2 ms 860 KB Output is correct
26 Correct 51 ms 852 KB Output is correct
27 Correct 341 ms 960 KB Output is correct
28 Correct 246 ms 860 KB Output is correct
29 Correct 246 ms 1240 KB Output is correct
30 Correct 13 ms 856 KB Output is correct
31 Correct 17 ms 860 KB Output is correct
32 Correct 0 ms 348 KB Output is correct
33 Correct 667 ms 17304 KB Output is correct
34 Correct 1022 ms 17268 KB Output is correct
35 Correct 878 ms 18632 KB Output is correct
36 Execution timed out 8064 ms 17044 KB Time limit exceeded
37 Halted 0 ms 0 KB -