Submission #1070311

# Submission time Handle Problem Language Result Execution time Memory
1070311 2024-08-22T13:05:03 Z GrindMachine Tricks of the Trade (CEOI23_trade) C++17
50 / 100
2544 ms 648632 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) (int)a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x,y) ((x+y-1)/(y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i,n) for(int i = 0; i < n; ++i)
#define rep1(i,n) for(int i = 1; i <= n; ++i)
#define rev(i,s,e) for(int i = s; i >= e; --i)
#define trav(i,a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a,b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a,b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(...) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct fenwick {
    int n;
    vector<T> tr;
    int LOG = 0;

    fenwick() {

    }

    fenwick(int n_) {
        n = n_;
        tr = vector<T>(n + 1);
        while((1<<LOG) <= n) LOG++;
    }

    void reset(){
        fill(all(tr),0);
    }

    int lsb(int x) {
        return x & -x;
    }

    void pupd(int i, T v) {
        for(; i <= n; i += lsb(i)){
            tr[i] += v;
        }
    }

    T sum(int i) {
        T res = 0;
        for(; i; i ^= lsb(i)){
            res += tr[i];
        }
        return res;
    }

    T query(int l, int r) {
        if (l > r) return 0;
        T res = sum(r) - sum(l - 1);
        return res;
    }

    int lower_bound(T s){
        // first pos with sum >= s
        if(sum(n) < s) return n+1;
        int i = 0;
        rev(bit,LOG-1,0){
            int j = i+(1<<bit);
            if(j > n) conts;
            if(tr[j] < s){
                s -= tr[j];
                i = j;
            }
        }

        return i+1;
    }

    int upper_bound(T s){
        return lower_bound(s+1);
    }
};

void solve(int test_case)
{
    ll n,k; cin >> n >> k;
    vector<ll> a(n+5), b(n+5);
    rep1(i,n) cin >> a[i];
    rep1(i,n) cin >> b[i]; 
    vector<ll> p(n+5);
    rep1(i,n) p[i] = p[i-1]+a[i];

    multiset<ll> ms1,ms2;
    ll curr_sum = 0;
    ll lx = 1, rx = 0;

    auto transfer = [&](){
        while(!ms2.empty() and sz(ms1) < k){
            curr_sum += *ms2.rbegin();
            ms1.insert(*ms2.rbegin());
            ms2.erase(--ms2.end());
        }

        while(sz(ms1) > k){
            ll x = *ms1.begin();
            curr_sum -= x;
            ms1.erase(ms1.begin());
            ms2.insert(x);
        }

        if(ms2.empty()) return;

        while(true){
            ll mn1 = *ms1.begin(), mx2 = *ms2.rbegin();
            if(mn1 >= mx2) break;
            ms1.erase(ms1.find(mn1));
            ms2.erase(ms2.find(mx2));
            ms1.insert(mx2);
            ms2.insert(mn1);
            curr_sum += mx2-mn1;
        }
    };

    auto ins = [&](ll i){
        ms1.insert(b[i]);
        curr_sum += b[i];
        transfer();
    };

    auto del = [&](ll i){
        if(ms1.find(b[i]) != ms1.end()){
            ms1.erase(ms1.find(b[i]));
            curr_sum -= b[i];
        }
        else{
            ms2.erase(ms2.find(b[i]));
        }

        transfer();
    };

    auto f = [&](ll l, ll r){
        if(r-l+1 < k) return -inf2;
        
        // expand
        while(rx < r){
            rx++;
            ins(rx);
        }
        while(lx > l){
            lx--;
            ins(lx);
        }

        // contract
        while(rx > r){
            del(rx);
            rx--;
        }
        while(lx < l){
            del(lx);
            lx++;
        }

        ll sum = -(p[r]-p[l-1]);
        sum += curr_sum;
        return sum;
    };

    ll ans = -inf2;
    vector<pll> segs;

    auto upd = [&](ll l, ll r, ll x){
        if(x < ans) return;
        if(x > ans){
            segs.clear();
        }
        ans = x;
        segs.pb({l,r});
    };

    auto go = [&](ll l, ll r, ll optl, ll optr, auto &&go) -> void{
        if(l > r) return;
        ll mid = (l+r) >> 1;
        ll best = -inf2, optm = -1;

        for(int i = optl; i <= optr; ++i){
            ll cost = f(mid,i);
            if(cost >= best){
                best = cost;
                optm = i;
            }
            upd(mid,i,cost);
        }

        go(l,mid-1,optl,optm,go);
        go(mid+1,r,optm,optr,go);
    };

    go(1,n-k+1,1,n,go);
    cout << ans << endl;

    vector<ll> c;
    rep1(i,n) c.pb(b[i]);
    c.pb(-1);
    sort(all(c));
    c.resize(unique(all(c))-c.begin());

    vector<ll> cb(n+5);
    rep1(i,n) cb[i] = lower_bound(all(c),b[i])-c.begin();

    vector<ll> pos[n+5];
    rep1(i,n) pos[cb[i]].pb(i);

    vector<array<ll,3>> here[n+5];
    ll siz = sz(segs);

    rep(i,siz){
        auto [l,r] = segs[i];
        here[(1+n)>>1].pb({l,r,i});
    }

    vector<ll> kth(siz);
    fenwick<ll> fenw(n+5);

    while(true){
        vector<array<ll,3>> nxt;
        fenw.reset();
        rev(mid,n,1){
            trav(i,pos[mid]){
                fenw.pupd(i,1);
            }

            for(auto [l,r,i] : here[mid]){
                ll cnt = fenw.query(l,r);
                if(cnt >= k){
                    kth[i] = mid;
                    nxt.pb({mid+1,r,i});
                }
                else{
                    nxt.pb({l,mid-1,i});
                }
            }
        }

        rep1(i,n) here[i].clear();
        
        bool ok = false;
        for(auto [l,r,i] : nxt){
            if(l > r) conts;
            ok = true;
            here[(l+r)>>1].pb({l,r,i});
        }

        if(!ok) break;
    }

    vector<ll> enter[n+5], leave[n+5];
    rep(i,siz){
        auto [l,r] = segs[i];
        enter[l].pb(kth[i]);
        leave[r+1].pb(kth[i]);
    }

    multiset<ll> ms;
    rep1(i,n){
        trav(x,enter[i]){
            ms.insert(x);
        }
        
        trav(x,leave[i]){
            ms.erase(ms.find(x));
        }

        if(!ms.empty() and cb[i] >= *ms.begin()){
            cout << 1;
        }
        else{
            cout << 0;
        }
    }

    cout << endl;
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Partially correct 0 ms 348 KB Partially correct
5 Correct 0 ms 348 KB Output is correct
6 Partially correct 1 ms 348 KB Partially correct
7 Partially correct 1 ms 348 KB Partially correct
8 Correct 1 ms 360 KB Output is correct
9 Partially correct 1 ms 348 KB Partially correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Partially correct 0 ms 348 KB Partially correct
5 Correct 0 ms 348 KB Output is correct
6 Partially correct 1 ms 348 KB Partially correct
7 Partially correct 1 ms 348 KB Partially correct
8 Correct 1 ms 360 KB Output is correct
9 Partially correct 1 ms 348 KB Partially correct
10 Correct 1 ms 348 KB Output is correct
11 Correct 1 ms 348 KB Output is correct
12 Correct 0 ms 348 KB Output is correct
13 Correct 0 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Partially correct 0 ms 348 KB Partially correct
16 Correct 0 ms 348 KB Output is correct
17 Partially correct 1 ms 348 KB Partially correct
18 Partially correct 1 ms 348 KB Partially correct
19 Correct 1 ms 344 KB Output is correct
20 Partially correct 1 ms 348 KB Partially correct
21 Correct 1 ms 348 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Correct 3 ms 1628 KB Output is correct
24 Partially correct 17 ms 1884 KB Partially correct
25 Partially correct 28 ms 1912 KB Partially correct
26 Partially correct 27 ms 1872 KB Partially correct
27 Correct 27 ms 7764 KB Output is correct
28 Partially correct 14 ms 1368 KB Partially correct
29 Correct 18 ms 1628 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Partially correct 772 ms 55572 KB Partially correct
3 Correct 1114 ms 42656 KB Output is correct
4 Correct 1041 ms 45704 KB Output is correct
5 Partially correct 1200 ms 74500 KB Partially correct
6 Partially correct 1405 ms 76636 KB Partially correct
7 Partially correct 2458 ms 64392 KB Partially correct
8 Correct 1179 ms 42688 KB Output is correct
9 Partially correct 1018 ms 42696 KB Partially correct
10 Partially correct 1172 ms 55504 KB Partially correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 344 KB Output is correct
2 Partially correct 772 ms 55572 KB Partially correct
3 Correct 1114 ms 42656 KB Output is correct
4 Correct 1041 ms 45704 KB Output is correct
5 Partially correct 1200 ms 74500 KB Partially correct
6 Partially correct 1405 ms 76636 KB Partially correct
7 Partially correct 2458 ms 64392 KB Partially correct
8 Correct 1179 ms 42688 KB Output is correct
9 Partially correct 1018 ms 42696 KB Partially correct
10 Partially correct 1172 ms 55504 KB Partially correct
11 Correct 0 ms 344 KB Output is correct
12 Partially correct 770 ms 55536 KB Partially correct
13 Correct 1192 ms 42700 KB Output is correct
14 Correct 1114 ms 45704 KB Output is correct
15 Partially correct 1273 ms 74648 KB Partially correct
16 Partially correct 1426 ms 76764 KB Partially correct
17 Partially correct 2230 ms 64384 KB Partially correct
18 Correct 1115 ms 42692 KB Output is correct
19 Partially correct 1063 ms 42700 KB Partially correct
20 Partially correct 1143 ms 55308 KB Partially correct
21 Correct 0 ms 344 KB Output is correct
22 Correct 1 ms 348 KB Output is correct
23 Partially correct 0 ms 348 KB Partially correct
24 Correct 0 ms 348 KB Output is correct
25 Partially correct 1 ms 348 KB Partially correct
26 Partially correct 1 ms 348 KB Partially correct
27 Correct 1 ms 348 KB Output is correct
28 Partially correct 1 ms 348 KB Partially correct
29 Correct 1 ms 348 KB Output is correct
30 Correct 1 ms 348 KB Output is correct
31 Correct 1496 ms 44488 KB Output is correct
32 Partially correct 1156 ms 70404 KB Partially correct
33 Partially correct 1791 ms 70872 KB Partially correct
34 Partially correct 1851 ms 61260 KB Partially correct
35 Partially correct 1837 ms 52660 KB Partially correct
36 Partially correct 2474 ms 50640 KB Partially correct
37 Correct 1333 ms 102720 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 348 KB Output is correct
2 Correct 0 ms 348 KB Output is correct
3 Correct 0 ms 348 KB Output is correct
4 Correct 0 ms 348 KB Output is correct
5 Correct 0 ms 348 KB Output is correct
6 Partially correct 0 ms 348 KB Partially correct
7 Correct 0 ms 348 KB Output is correct
8 Partially correct 1 ms 348 KB Partially correct
9 Partially correct 1 ms 348 KB Partially correct
10 Correct 1 ms 360 KB Output is correct
11 Partially correct 1 ms 348 KB Partially correct
12 Correct 1 ms 348 KB Output is correct
13 Correct 1 ms 348 KB Output is correct
14 Correct 0 ms 348 KB Output is correct
15 Correct 0 ms 348 KB Output is correct
16 Correct 0 ms 348 KB Output is correct
17 Partially correct 0 ms 348 KB Partially correct
18 Correct 0 ms 348 KB Output is correct
19 Partially correct 1 ms 348 KB Partially correct
20 Partially correct 1 ms 348 KB Partially correct
21 Correct 1 ms 344 KB Output is correct
22 Partially correct 1 ms 348 KB Partially correct
23 Correct 1 ms 348 KB Output is correct
24 Correct 1 ms 348 KB Output is correct
25 Correct 3 ms 1628 KB Output is correct
26 Partially correct 17 ms 1884 KB Partially correct
27 Partially correct 28 ms 1912 KB Partially correct
28 Partially correct 27 ms 1872 KB Partially correct
29 Correct 27 ms 7764 KB Output is correct
30 Partially correct 14 ms 1368 KB Partially correct
31 Correct 18 ms 1628 KB Output is correct
32 Correct 0 ms 344 KB Output is correct
33 Partially correct 772 ms 55572 KB Partially correct
34 Correct 1114 ms 42656 KB Output is correct
35 Correct 1041 ms 45704 KB Output is correct
36 Partially correct 1200 ms 74500 KB Partially correct
37 Partially correct 1405 ms 76636 KB Partially correct
38 Partially correct 2458 ms 64392 KB Partially correct
39 Correct 1179 ms 42688 KB Output is correct
40 Partially correct 1018 ms 42696 KB Partially correct
41 Partially correct 1172 ms 55504 KB Partially correct
42 Correct 0 ms 344 KB Output is correct
43 Partially correct 770 ms 55536 KB Partially correct
44 Correct 1192 ms 42700 KB Output is correct
45 Correct 1114 ms 45704 KB Output is correct
46 Partially correct 1273 ms 74648 KB Partially correct
47 Partially correct 1426 ms 76764 KB Partially correct
48 Partially correct 2230 ms 64384 KB Partially correct
49 Correct 1115 ms 42692 KB Output is correct
50 Partially correct 1063 ms 42700 KB Partially correct
51 Partially correct 1143 ms 55308 KB Partially correct
52 Correct 0 ms 344 KB Output is correct
53 Correct 1 ms 348 KB Output is correct
54 Partially correct 0 ms 348 KB Partially correct
55 Correct 0 ms 348 KB Output is correct
56 Partially correct 1 ms 348 KB Partially correct
57 Partially correct 1 ms 348 KB Partially correct
58 Correct 1 ms 348 KB Output is correct
59 Partially correct 1 ms 348 KB Partially correct
60 Correct 1 ms 348 KB Output is correct
61 Correct 1 ms 348 KB Output is correct
62 Correct 1496 ms 44488 KB Output is correct
63 Partially correct 1156 ms 70404 KB Partially correct
64 Partially correct 1791 ms 70872 KB Partially correct
65 Partially correct 1851 ms 61260 KB Partially correct
66 Partially correct 1837 ms 52660 KB Partially correct
67 Partially correct 2474 ms 50640 KB Partially correct
68 Correct 1333 ms 102720 KB Output is correct
69 Correct 0 ms 348 KB Output is correct
70 Partially correct 771 ms 55524 KB Partially correct
71 Correct 1121 ms 42688 KB Output is correct
72 Correct 1034 ms 45768 KB Output is correct
73 Partially correct 1154 ms 74500 KB Partially correct
74 Partially correct 1288 ms 76756 KB Partially correct
75 Partially correct 2181 ms 64516 KB Partially correct
76 Correct 1127 ms 42696 KB Output is correct
77 Partially correct 990 ms 42700 KB Partially correct
78 Partially correct 1173 ms 55432 KB Partially correct
79 Correct 1 ms 344 KB Output is correct
80 Correct 0 ms 348 KB Output is correct
81 Partially correct 1 ms 348 KB Partially correct
82 Correct 0 ms 348 KB Output is correct
83 Partially correct 1 ms 344 KB Partially correct
84 Partially correct 1 ms 344 KB Partially correct
85 Correct 1 ms 348 KB Output is correct
86 Partially correct 1 ms 348 KB Partially correct
87 Correct 1 ms 348 KB Output is correct
88 Correct 1 ms 348 KB Output is correct
89 Correct 1493 ms 44744 KB Output is correct
90 Partially correct 1140 ms 70364 KB Partially correct
91 Partially correct 1825 ms 71448 KB Partially correct
92 Partially correct 1936 ms 61524 KB Partially correct
93 Partially correct 1901 ms 52808 KB Partially correct
94 Partially correct 2511 ms 50516 KB Partially correct
95 Correct 1290 ms 104740 KB Output is correct
96 Correct 4 ms 1628 KB Output is correct
97 Partially correct 17 ms 1884 KB Partially correct
98 Partially correct 27 ms 1880 KB Partially correct
99 Partially correct 26 ms 1916 KB Partially correct
100 Correct 27 ms 7764 KB Output is correct
101 Partially correct 14 ms 1368 KB Partially correct
102 Correct 18 ms 1628 KB Output is correct
103 Correct 2156 ms 53700 KB Output is correct
104 Partially correct 2078 ms 49044 KB Partially correct
105 Partially correct 2033 ms 58220 KB Partially correct
106 Partially correct 2544 ms 63308 KB Partially correct
107 Partially correct 382 ms 55496 KB Partially correct
108 Partially correct 2365 ms 67992 KB Partially correct
109 Correct 2484 ms 648632 KB Output is correct
110 Partially correct 1722 ms 60444 KB Partially correct
111 Correct 668 ms 52932 KB Output is correct
112 Correct 2039 ms 259752 KB Output is correct